Math, asked by teksultankishor, 3 months ago

2. What is degree of polynomial 2x square+5x cube+7?​

Answers

Answered by arjunlamani2003
1

Answer:

cube is the degree of polynomial

Answered by Anonymous
2

LIKE AND MARK AS BRAINLIST

Step-by-step explanation:

Full SiteNavigation

Degree of a Polynomial

Search

Here we will learn the basic concept of polynomial and the degree of a polynomial.

What is polynomial?

An algebraic expression which consists of one, two or more terms is called a polynomial.

How to find a degree of a polynomial?

The degree of the polynomial is the greatest of the exponents (powers) of its various terms.

Examples of polynomials and its degree:

1. For polynomial 2x2 - 3x5 + 5x6.

We observe that the above polynomial has three terms. Here the first term is 2x2, the second term is -3x5 and the third term is 5x6.

Now we will determine the exponent of each term.

(i) the exponent of the first term 2x2 = 2

(ii) the exponent of the second term 3x5 = 5

(iii) the exponent of the third term 5x6 = 6

Since, the greatest exponent is 6, the degree of 2x2 - 3x5 + 5x6 is also 6.

Therefore, the degree of the polynomial 2x2 - 3x5 + 5x6 = 6.

2. Find the degree of the polynomial 16 + 8x – 12x2 + 15x3 - x4.

We observe that the above polynomial has five terms. Here the first term is 16, the second term is 8x, the third term is – 12x2, the fourth term is 15x3 and the fifth term is - x4.

Now we will determine the exponent of each term.

(i) the exponent of the first term 16 = 0

(ii) the exponent of the second term 8x = 1

(iii) the exponent of the third term – 12x2 = 2

(iv) the exponent of the fourth term 15x3 = 3

(v) the exponent of the fifth term - x4 = 4

Since, the greatest exponent is 4, the degree of 16 + 8x – 12x2 + 15x3 - x4 is also 4.

Therefore, the degree of the polynomial 16 + 8x – 12x2 + 15x3 - x4 = 4.

Similar questions