Math, asked by parasu0281k, 3 months ago

2. What is the product of (x+a) and (x+b)?
L.x2+ (a-b)X + ab ll. x2 + (a+b)x - ab
JII. x2 + (a+b)x - ab IV. x2 + (a+b)x + ab

Answers

Answered by Anonymous
2

We will discuss here about the expansion of (x ± a)(x ± b)

(x + a)(x + b) = x(x + b) + a (x + b)

= x2 + xb + ax + ab

= x2 + (b + a)x + ab

(x - a)(x - b) = x(x - b) - a (x - b)

= x2 - xb - ax + ab

= x2 - (b + a)x + ab

x + a)(x - b) = x(x - b) + a (x - b)

= x2 - xb + ax - ab

= x2 + (a - b)x - ab

(x - a)(x + b) = x(x + b) - a (x + b)

= x2 + xb - ax - ab

= x2 - (a - b)x – ab

Thus, we have

(x + a)(x + b) = x2 + (b + a)x + ab

(x - a)(x - b) = x2 - (b + a)x + ab

(x + a)(x - b) = x2 + (a - b)x - ab

(x - a)(x + b) = x2 - (a - b)x – ab

Answered by MrHyper
24

\huge\rm\purple{an{\mathcal{S}}wer:}

{}

\bf{{\underline{To~find}}:}

  • The product of \sf{(x+a)} and \sf{(x+b)}

\bf{{\underline{Solution}}:}

\tt{~~~~~~~~(x+a)(x+b)}

\tt{:\longmapsto (x~×~x)+(x×b)+(a×x)+(a×b)}

\tt{:\longmapsto x^{2}+(bx+ax)+ab}

\tt{:\longmapsto {\purple{\underline{\boxed{\bf x^{2}+(a+b)x+ab}}}}}

\bf{{\underline{Required~answer}}:}

 \tt (x + a)(x + b) =  \purple{ \underline{ \boxed{ \bf {x}^{2}  + (a + b)x + ab}}}

 \tt(IV) \:  \:  \purple{ \bf {x}^{2}  + (a + b)x + ab}

Similar questions