2. what is uncertaineny principle?
Answers
Answered by
1
Answer:
- Uncertainty Principle is one of the most celebrated results of quantum mechanics and states that one (often, but not always) cannot know all things about a particle (as it is defined by it's wave function) at the same time. This principle is mathematically manifested as non-commuting operators.
Answered by
2
Explanation:
- In quantum mechanics, the uncertainty principle (also known as Heisenberg's uncertainty principle) is any of a variety of mathematical inequalities asserting a fundamental limit to the precision with which the values for certain pairs of physical quantities of a particle, such as position, x, and momentum, p, can be predicted from initial conditions. Such variable pairs are known as complementary variables or canonically conjugate variables, and, depending on interpretation, the uncertainty principle limits to what extent such conjugate properties maintain their approximate meaning, as the mathematical framework of quantum physics does not support the notion of simultaneously well-defined conjugate properties expressed by a single value. The uncertainty principle implies that it is in general not possible to predict the value of a quantity with arbitrary certainty, even if all initial conditions are specified.
- Introduced first in 1927 by the German physicist Werner Heisenberg, the uncertainty principle states that the more precisely the position of some particle is determined, the less precisely its momentum can be predicted from initial conditions, and vice versa. The formal inequality relating the standard deviation of position σx and the standard deviation of momentum σp was derived by Earle Hesse Kennard later that year and by Hermann Weyl in 1928:
where h is the reduced Planck constant, h/(2π).
- Historically, the uncertainty principle has been confused with a related effect in physics, called the observer effect, which notes that measurements of certain systems cannot be made without affecting the system, that is, without changing something in a system. Heisenberg utilized such an observer effect at the quantum level (see below) as a physical "explanation" of quantum uncertainty. It has since become clearer, however, that the uncertainty principle is inherent in the properties of all wave-like systems,and that it arises in quantum mechanics simply due to the matter wave nature of all quantum objects. Thus, the uncertainty principle actually states a fundamental property of quantum systems and is not a statement about the observational success of current technology. It must be emphasized that measurement does not mean only a process in which a physicist-observer takes part, but rather any interaction between classical and quantum objects regardless of any observer.
- Since the uncertainty principle is such a basic result in quantum mechanics, typical experiments in quantum mechanics routinely observe aspects of it. Certain experiments, however, may deliberately test a particular form of the uncertainty principle as part of their main research program. These include, for example, tests of number–phase uncertainty relations in superconducting or quantum optics systems. Applications dependent on the uncertainty principle for their operation include extremely low-noise technology such as that required in gravitational wave interferometers.
INTRODUCTION:
- The evolution of an initially very localized gaussian wave function of a free particle in two-dimensional space, with color and intensity indicating phase and amplitude. The spreading of the wave function in all directions shows that the initial momentum has a spread of values, unmodified in time; while the spread in position increases in time: as a result, the uncertainty Δx Δp increases in time.
- The superposition of several plane waves to form a wave packet. This wave packet becomes increasingly localized with the addition of many waves. The Fourier transform is a mathematical operation that separates a wave packet into its individual plane waves. The waves shown here are real for illustrative purposes only, whereas in quantum mechanics the wave function is generally complex.
- The uncertainty principle is not readily apparent on the macroscopic scales of everyday experience.So it is helpful to demonstrate how it applies to more easily understood physical situations. Two alternative frameworks for quantum physics offer different explanations for the uncertainty principle. The wave mechanics picture of the uncertainty principle is more visually intuitive, but the more abstract matrix mechanics picture formulates it in a way that generalizes more easily.
HOPE IT'S HELPS
Attachments:
Similar questions
Physics,
4 months ago
Biology,
4 months ago
Hindi,
4 months ago
CBSE BOARD X,
10 months ago
Math,
10 months ago