Math, asked by kishanpoorna, 6 months ago

2 women and 5 men can together finish an embroidery work in 4 days, while 3 women and 6 men can finish it in 3 days. Find the time taken by 1 woman alone to finish the work, and also that taken by 1 man alone.solve it by elimination method.​

Answers

Answered by EliteZeal
30

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

 \large{\green{\underline \bold{\tt{Given :-}}}}

 \:\:

  • 2 women and 5 men can together finish an embroidery work in 4 days

 \:\:

  • 3 women and 6 men can finish it in 3 days

 \:\:

 \large{\red{\underline \bold{\tt{To \: Find :-}}}}

 \:\:

  • Time taken by 1 woman alone to finish the work, and also that taken by 1 man alone

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

  • Let 1 woman can finish the work alone in "x" days

  • Let 1 man can finish the work alone in "y" days

 \:\:

 \underline{\bold{\texttt{One woman's 1 day work :}}}

 \:\:

 \sf \dfrac { 1 } { x }

 \:\:

 \underline{\bold{\texttt{One man's 1 day work :}}}

 \:\:

 \sf \dfrac { 1 } { y }

 \:\:

 \underline{\bold{\texttt{2 women's 1 day work :}}}

 \:\:

 \sf \dfrac { 2 } { x }

 \:\:

 \underline{\bold{\texttt{5 men's 1 day work :}}}

 \:\:

 \sf \dfrac { 5 } { y }

 \:\:

 \underline{\bold{\texttt{3 women's 1 day work :}}}

 \:\:

 \sf \dfrac { 3 } { x }

 \:\:

 \underline{\bold{\texttt{6 men's one day work :}}}

 \:\:

 \sf \dfrac { 6 } { y }

 \:\:

 \underline{\bold{\texttt{2 women's and 5 men's 1 day work :}}}

 \:\:

 \sf \dfrac { 2 } { x } + \dfrac { 5 } { y }

 \:\:

 \underline{\bold{\texttt{2 women's and 5 men's 4 day work  :}}}

 \:\:

 \sf (\dfrac { 2 } { x } + \dfrac { 5 } { y }) \times 4

 \:\:

 \underline{\bold{\texttt{3 women's and 6 men's 1 day work :}}}

 \:\:

 \sf \dfrac { 3 } { x } + \dfrac { 6 } { y }

 \:\:

 \underline{\bold{\texttt{3 women's and 6 men's 3 day work  :}}}

 \:\:

 \sf (\dfrac { 3 } { x } + \dfrac { 6} { y }) \times 3

 \:\:

 \purple{\underline \bold{According \: to \: the \ question :}}

 \:\:

2 women and 5 men can together finish an embroidery work in 4 days

 \:\:

So,

 \:\:

 \sf (\dfrac { 2 } { x } + \dfrac { 5 } { y }) \times 4 = 1

 \:\:

  • Let  \sf \dfrac { 1 } { x } = a

 \:\:

  • Let  \sf \dfrac { 1 } { y} = b

 \:\:

So the above equation will be

 \:\:

 \sf (2a + 5b) \times 4 = 1

 \:\:

➠ 8a + 20b = 1 --------- (1)

 \:\:

Also given that , 3 women and 6 men can finish it in 3 days

 \:\:

So,

 \:\:

 \sf (\dfrac { 3 } { x } + \dfrac { 6} { y }) \times 3 = 1

 \:\:

  • Let  \sf \dfrac { 1 } { x } = a

 \:\:

  • Let  \sf \dfrac { 1 } { y} = b

 \:\:

So the above equation will be

 \:\:

 \sf (3a + 6b) \times 3 = 1

 \:\:

➠ 9a + 18b = 1 --------- (2)

 \:\:

 \underline{\bold{\texttt{Multiplying (1) by 9 }}}

 \:\:

➜ 8a + 20b = 1

 \:\:

➠ 72a + 180b = 9 ------ (3)

 \:\:

 \underline{\bold{\texttt{Multiplying (2) by 8 }}}

 \:\:

➜ 9a + 18b = 1

 \:\:

➠ 72a + 144b = 8 ----- (4)

 \:\:

 \underline{\bold{\texttt{Subtracting (4) from (3) }}}

 \:\:

➜ 72a + 180b - 72a - 144b = 9 - 8

 \:\:

➜ 36b = 1

 \:\:

 \sf b = \dfrac { 1 } { 36 } ------ (5)

 \:\:

 \underline{\bold{\texttt{Putting b = $ \dfrac { 1 } { 36 } $ from (5) to (2) }}}

 \:\:

➠ 9a + 18b = 1

 \:\:

 \sf 9a + 18( \dfrac { 1 } { 36 }) = 1

 \:\:

 \sf 9a +  \dfrac { 1 } { 2} = 1

 \:\:

 \sf \dfrac { 18a + 1 } { 2 } = 1

 \:\:

➜ 18a = 2 - 1

 \:\:

➜ 18a = 1

 \:\:

 \sf a = \dfrac { 1 } { 18 } ------- (6)

 \:\:

 \underline{\bold{\texttt{Putting the real values of a \& b :}}}

 \:\:

 \sf b = \dfrac { 1 } { 36 } = \dfrac { 1 } { y }

 \:\:

➨ y = 36

 \:\:

  • Hence, 1 man can finish the work alone in 36 days

 \:\:

 \sf a = \dfrac { 1 } { 18 } = \dfrac { 1 } { x }

 \:\:

➨ x = 18

 \:\:

  • Hence, 1 woman can finish the work alone in 18 days

Cynefin: Great :D
Answered by Ranveerx107
0

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

 \large{\green{\underline \bold{\tt{Given :-}}}}

 \:\:

  • 2 women and 5 men can together finish an embroidery work in 4 days

 \:\:

  • 3 women and 6 men can finish it in 3 days

 \:\:

 \large{\red{\underline \bold{\tt{To \: Find :-}}}}

 \:\:

  • Time taken by 1 woman alone to finish the work, and also that taken by 1 man alone

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

  • Let 1 woman can finish the work alone in "x" days

  • Let 1 man can finish the work alone in "y" days

 \:\:

 \underline{\bold{\texttt{One woman's 1 day work :}}}

 \:\:

 \sf \dfrac { 1 } { x }

 \:\:

 \underline{\bold{\texttt{One man's 1 day work :}}}

 \:\:

 \sf \dfrac { 1 } { y }

 \:\:

 \underline{\bold{\texttt{2 women's 1 day work :}}}

 \:\:

 \sf \dfrac { 2 } { x }

 \:\:

 \underline{\bold{\texttt{5 men's 1 day work :}}}

 \:\:

 \sf \dfrac { 5 } { y }

 \:\:

 \underline{\bold{\texttt{3 women's 1 day work :}}}

 \:\:

 \sf \dfrac { 3 } { x }

 \:\:

 \underline{\bold{\texttt{6 men's one day work :}}}

 \:\:

 \sf \dfrac { 6 } { y }

 \:\:

 \underline{\bold{\texttt{2 women's and 5 men's 1 day work :}}}

 \:\:

 \sf \dfrac { 2 } { x } + \dfrac { 5 } { y }

 \:\:

 \underline{\bold{\texttt{2 women's and 5 men's 4 day work  :}}}

 \:\:

 \sf (\dfrac { 2 } { x } + \dfrac { 5 } { y }) \times 4

 \:\:

 \underline{\bold{\texttt{3 women's and 6 men's 1 day work :}}}

 \:\:

 \sf \dfrac { 3 } { x } + \dfrac { 6 } { y }

 \:\:

 \underline{\bold{\texttt{3 women's and 6 men's 3 day work  :}}}

 \:\:

 \sf (\dfrac { 3 } { x } + \dfrac { 6} { y }) \times 3

 \:\:

 \purple{\underline \bold{According \: to \: the \ question :}}

 \:\:

2 women and 5 men can together finish an embroidery work in 4 days

 \:\:

So,

 \:\:

 \sf (\dfrac { 2 } { x } + \dfrac { 5 } { y }) \times 4 = 1

 \:\:

Let  \sf \dfrac { 1 } { x } = a

 \:\:

Let  \sf \dfrac { 1 } { y} = b

 \:\:

So the above equation will be

 \:\:

 \sf (2a + 5b) \times 4 = 1

 \:\:

➠ 8a + 20b = 1 --------- (1)

 \:\:

Also given that , 3 women and 6 men can finish it in 3 days

 \:\:

So,

 \:\:

 \sf (\dfrac { 3 } { x } + \dfrac { 6} { y }) \times 3 = 1

 \:\:

Let  \sf \dfrac { 1 } { x } = a

 \:\:

Let  \sf \dfrac { 1 } { y} = b

 \:\:

So the above equation will be

 \:\:

 \sf (3a + 6b) \times 3 = 1

 \:\:

➠ 9a + 18b = 1 --------- (2)

 \:\:

 \underline{\bold{\texttt{Multiplying (1) by 9 }}}

 \:\:

➜ 8a + 20b = 1

 \:\:

➠ 72a + 180b = 9 ------ (3)

 \:\:

 \underline{\bold{\texttt{Multiplying (2) by 8 }}}

 \:\:

➜ 9a + 18b = 1

 \:\:

➠ 72a + 144b = 8 ----- (4)

 \:\:

 \underline{\bold{\texttt{Subtracting (4) from (3) }}}

 \:\:

➜ 72a + 180b - 72a - 144b = 9 - 8

 \:\:

➜ 36b = 1

 \:\:

 \sf b = \dfrac { 1 } { 36 } ------ (5)

 \:\:

 \underline{\bold{\texttt{Putting b = $ \dfrac { 1 } { 36 } $ from (5) to (2) }}}

 \:\:

➠ 9a + 18b = 1

 \:\:

 \sf 9a + 18( \dfrac { 1 } { 36 }) = 1

 \:\:

 \sf 9a +  \dfrac { 1 } { 2} = 1

 \:\:

 \sf \dfrac { 18a + 1 } { 2 } = 1

 \:\:

➜ 18a = 2 - 1

 \:\:

➜ 18a = 1

 \:\:

 \sf a = \dfrac { 1 } { 18 } ------- (6)

 \:\:

 \underline{\bold{\texttt{Putting the real values of a \& b :}}}

 \:\:

 \sf b = \dfrac { 1 } { 36 } = \dfrac { 1 } { y }

 \:\:

➨ y = 36

 \:\:

  • Hence, 1 man can finish the work alone in 36 days

 \:\:

 \sf a = \dfrac { 1 } { 18 } = \dfrac { 1 } { x }

 \:\:

➨ x = 18

 \:\:

  • Hence, 1 woman can finish the work alone in 18 days
Similar questions