2. Write the other trigonometric ratios of A in
terms of sec A.
Answers
Answered by
0
Step-by-step explanation:
- CosA = 1/SecA
We know,Sin^2 A + Cos^2 A = 1
=>Sin^2 A = 1 - Cos^2 A
=>SinA= root(1-Cos^2 A)
=>SinA= root[1 - (1/SecA)^2]
=>SinA= root[1-(1/Sec^2 A)]
=>SinA= root[(Sec^2 A - 1)/Sec^2 A]
- SinA = root(Sec^2 A - 1) / Sec A
[Note - Here Sec A is not included in root]
CosecA = 1/SinA = 1 ÷ root(Sec^2 A-1) /SecA
- CosecA=SecA/root(Sec^2 A-1)
TanA = SinA/CosA = [root(Sec^2 A-1)/SecA]/(1÷SecA)
- TanA = root(Sec^2 A - 1)
CotA = 1/TanA = 1 ÷ root(Sec^2 A - 1)
- CotA = 1/root(Sec^2 A - 1)
Similar questions