Math, asked by jikookie, 2 months ago

2|x+1|^(2)-|x+1|=3, then x=

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given equation is

\rm :\longmapsto\:2 { |x + 1| }^{2} -  |x + 1| = 3

\rm :\longmapsto\:As \:  { |x + 1| }^{2} =  {(x + 1)}^{2}

So, given equation can be rewritten as

\rm :\longmapsto\:2 {(x + 1)}^{2} -  |x + 1| - 3 = 0 -  -  - (1)

Now, we know,

By definition of Modulus function,

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: |x|  = \begin{cases} &\sf{ - x \:  \: if \:  \: x < 0} \\ &\sf{x \:  \: if \:  \: x \geqslant 0} \end{cases}\end{gathered}\end{gathered}

Thus,

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: |x + 1|  = \begin{cases} &\sf{ - (x  + 1)\:  \: if \:  \: x <  - 1} \\ &\sf{x + 1 \:  \: if \:  \: x \geqslant  - 1} \end{cases}\end{gathered}\end{gathered}

So, Two case arises

Case :- 1

\rm :\longmapsto\:When \: x \:  <  \:  -  \: 1

\rm :\implies\: |x + 1|  =  - (x + 1)

So, equation (1) reduces to

\rm :\longmapsto\:2 {(x + 1)}^{2}  +( x + 1)- 3 = 0

\rm :\longmapsto\:2( {x}^{2} + 2x + 1) + x + 1  - 3 = 0

\rm :\longmapsto\:2{x}^{2} + 4x +2 + x - 2= 0

\rm :\longmapsto\:2{x}^{2} + 5x = 0

\rm :\longmapsto\:x(2x + 5) = 0

\rm :\implies\:x = 0 \:  \:  \: or \:  \:  \:  -  \dfrac{5}{2}

\rm :\longmapsto\:As \: x \:  <  \:  -  \: 1

\bf\implies \:x =  -  \: \dfrac{5}{2}

Case :- 2

\rm :\longmapsto\:When \: x \:  \geqslant  \:  -  \: 1

\rm :\implies\: |x + 1|  = x + 1

So, equation (1) can be rewritten as

\rm :\longmapsto\:2 {(x + 1)}^{2}   - ( x + 1)- 3 = 0

\rm :\longmapsto\:2( {x}^{2} + 2x + 1)  - x  -  1  - 3 = 0

\rm :\longmapsto\:2 {x}^{2} + 4x +2  - x  -  4= 0

\rm :\longmapsto\: {2x}^{2} + 3x - 2 = 0

\rm :\longmapsto\: {2x}^{2} + 4x  - x- 2 = 0

\rm :\longmapsto\:2x(x + 2) - 1(x +2) = 0

\rm :\longmapsto\:(2x - 1)(x + 2) = 0

\rm :\implies\:x =  - 2 \:  \:  \:  \: or \:  \:  \:  \: x =  \dfrac{1}{2}

\rm :\longmapsto\:As \: x \:   \geqslant   \:  -  \: 1

\bf\implies \:x =\: \dfrac{1}{2}

Hence,

\rm :\longmapsto\:2 { |x + 1| }^{2} -  |x + 1| = 3 \: have \: solution \:

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{\bf\ \:x =\: \dfrac{1}{2}  \:  \: or \:  \:  -  \:  \dfrac{5}{2} }

Similar questions