Math, asked by rohith4986, 10 months ago

2^x+1=3^1-x then find the value of x by using logarithms​

Answers

Answered by amitkumar44481
6

AnsWer :

0.226294.

Solution :

We have, Equation.

  \tt \dagger \:  \:  \:  \:  \: {2}^{x + 1}  =  {3}^{1 - x}

  \tt :  \implies {2}^{x + 1}  =  {3}^{1 - x}

  \tt :  \implies {2}^{x} \times  {2}^{1}  =  {3}^{1} \times  {3}^{ - x}

  \tt :  \implies {2}^{x } \times {2}^{1}     =   \dfrac{{3}^{1}}{ {3}^{x} }

  \tt :  \implies {2}^{x } \times {3}^{x}       =   \dfrac{{3}^{1} }{{2}^{1} }

  \tt :  \implies {2}^{x } \times {3}^{x}       =   \dfrac{3}{2 }

  \tt :  \implies {6}^{x }     =   \dfrac{3 }{2}

Taking Log on Both sides, We get.

  \tt :  \implies log 6^x  =   log \dfrac{3}{2}

  \tt :  \implies  x =   log_{6} \dfrac{3}{2}

  \tt :  \implies x = 0.226294.

Similar questions