Math, asked by fijwmfyey, 3 months ago

2/x-1+3/y+1=2,3/x-1+2/y+1=13/6 solve for x and y using method of cross multiplication

Answers

Answered by Flaunt
108

\huge\bold{\gray{\sf{Answer:}}}

\bold{Explanation:}

 \sf=  >  \dfrac{2}{x - 1}  +  \dfrac{3}{y + 1} - 2=0......(1)

 \sf=  >  \dfrac{3}{x - 1}  +  \dfrac{2}{y + 1}  -  \dfrac{13}{6} =0....(2)

Let \sf  \dfrac{1}{x - 1} \:be\: 'u' \sf \dfrac{1}{y + 1} \:be \:'v'

The new equation come :

 \sf=  > 2u + 3v - 2 = 0...(3)

 \sf=  > 3u + 2v -  \dfrac{13}{6}  = 0....(4)

General form of cross multiplication method is:

\sf \dfrac{a}{b_{1}c_{2}- b_{2}c_{1}}  =   \dfrac{- b}{a_{1}c_{2} - a_{2}c_{1}}  =  \dfrac{1}{a_{1}b_{2} - a_{2}b_{1}}

 \sf=  >  \sf \dfrac{a}{3 \times   -  \dfrac{13}{6}  - 2 \times  - 2}  =  \dfrac{  -b}{2 \times  -  \dfrac{13}{6} - 3 \times  - 2 }  =    \dfrac{1}{2 \times 2 - 3 \times 3}

 \sf=  >  \sf \dfrac{a}{ -  \dfrac{13}{2}  + 4} =  \dfrac{ - b}{ -  \dfrac{13}{3}  + 6}   =  \dfrac{c}{4 - 9}

 \sf=  >  \sf \dfrac{a}{ -  \dfrac{5}{2} }  =  \dfrac{  -b}{ \dfrac{5}{3} }  =  \dfrac{c}{ - 5}

\sf =  >  \sf -  \dfrac{2}{5} a =  \dfrac{ - 3b}{5}  =  \dfrac{  1}{ - 5}

 \sf=  >  - 10a =  -15b

 \sf=  >   2a =   3b

 \sf=  >2a = 3b....(5)

\sf =  >   \dfrac{ -3b}{5}  =  \dfrac{  1}{ - 5}

 \sf=  >15b =  5

\sf =  > \sf b =  \dfrac{  5}{15}  =  \dfrac{1}{3}

Put b's value in equation (5)

 \sf =  > 2a = 3 \times    \dfrac{1}{3}

 \sf =  >2a =   1

 \sf=  > a =   \dfrac{1}{2}

Check from Equation (3) and (4) a which is used in place of u and b which is used in place of v

Now finding u and v value

 \sf\bold{=  > a = u}

 \sf=  >    \dfrac{1}{2}  =  \dfrac{1}{x - 1}

 \sf=  >  x - 1 = 2

\sf =  >   x = 3

\sf\huge{x = 3}

 \sf=  > b =  v

 \sf=  > b =  \dfrac{1}{y + 1}

 \sf=  >    \dfrac{1}{3}  =  \dfrac{1}{y + 1}

 \sf=  >  y + 1 = 3

 \sf=  >  y = 2

 \sf\huge {y =  2}

Similar questions