Math, asked by kopal1342, 11 months ago

2^x-1/√(x+1)-1 evaluate for limit x approaches to zero

Answers

Answered by Anonymous
2

Answer:

\large \bold\red{2 \:  ln(2) }

Step-by-step explanation:

Given that,

  • \lim{x\to 0} \frac{ {2}^{x}  - 1}{ \sqrt{(x + 1)}  - 1}

If we put the value of x = 0 in the given limit.

We will get 0/0 form.

Therefore,

We can Apply L- Hospital's Rule here.

  • In L - Hospital's Rule, we separately differentiate both Numerator and Denominator till we get a defined value when x = 0 is substituted.

Therefore,

We get,

 = \lim{x\to 0} \frac{ \frac{d}{dx} ( {2}^{x}  - 1)}{ \frac{d}{dx}( \sqrt{(x + 1)}  - 1) }  \\  \\  = \lim{x\to 0} \frac{ \frac{d}{dx} ({2}^{x})   -  \frac{d}{dx}(1) }{ \frac{d}{dx} ( \sqrt{x + 1} ) -  \frac{d}{dx}(1) }

But,

We know that,

  •  \frac{d}{dx}  {a}^{x}  =  {a}^{x}  ln(a)

  •  \frac{d}{dx}  \sqrt{x}  =  \frac{1}{2 \sqrt{x} }

  •  \frac{d}{dx} (constant \: term) = 0

Therefore,

We get,

 = \lim{x\to 0} \frac{ {2}^{x} ln(2) - 0  }{ \frac{1}{2 \sqrt{x + 1} } - 0 }  \\  \\  = \lim{x\to 0} \frac{ {2}^{x}  ln(2) }{ \frac{1}{2 \sqrt{x + 1} } }  \\  \\  =  \frac{ {2}^{0}  ln(2) }{ \frac{1}{2 \sqrt{0 + 1} } }  \\  \\  =  \frac{1 \times  ln(2) }{ \frac{1}{2 \sqrt{1} } } \\   \\ =  \frac{ ln(2) }{ \frac{1}{2} }   \\  \\  =  \large \bold{2 \:  ln(2) }

Similar questions