Math, asked by Rawala1621, 8 months ago

2(x-1/x+3) -7 (x+3/2x-1) =5 , x≠-3 and 1/2

Answers

Answered by Isighting12
0

Answer:

Step-by-step explanation:

2(\frac{x - 1 }{x + 3} )- 7(\frac{x + 3}{2x -1}) =5 \\\\\frac{2x - 2 }{x + 3} - \frac{7x  +  21}{2x - 1} =5\\\\\frac{(2x - 2)(2x - 1) - (7x  +  21)(x + 3)}{(x + 3)(2x - 1 )} = 5 \\\\\frac{4x^{2} -2x -4x + 2 -(7x^{2} + 21x + 21x + 63)  }{2x^{2} - x + 6x - 3 } =5\\\frac{4x^{2} - 2x - 4x + 2 -7x^{2} - 21x - 21x - 63) }{2x^{2} + 5x - 3} =5\\\frac{-3x^{2} - 48x -62 }{2x^{2} + 5x - 3} =5\\\\-3x^{2} - 27x -62 = 5(2x^{2} + 5x - 3)\\-3x^{2} - 48x -62 = 10x^{2} + 25x - 15\\ -13x^{2} - 73x -47 = 0\\\\13x^{2} +73x +47=0\\

not able to solve it further sorry

Answered by hukam0685
0

Step-by-step explanation:

To solve:

2 \big( \frac{x - 1}{x + 3}  \big) - 7\big( \frac{x + 3}{2x - 1} ) = 5 \\  \\

Step 1: Take LCM

 \bigg( \frac{2(x - 1)(2x - 1) - 7(x + 3)(x + 3)}{(x + 3)(2x - 1)}  \bigg)  = 5 \\  \\  \frac{2x - 2)((2x - 1) - 7( {x}^{2} + 6x + 9) }{2 {x}^{2} - x + 6x - 3 }  = 5 \\  \\ 4 {x}^{2}  - 2x - 4x + 2 - 7 {x}^{2}  - 42x - 63 = 5(2 {x}^{2}   + 5x - 3) \\  \\  - 3 {x}^{2}  - 48 {x}  - 61 = 10 {x}^{2}  + 25x - 15 \\  \\  - 13 {x}^{2}  - 73x - 46 = 0 \\  \\ 13 {x}^{2}  + 73x + 46 = 0 \\  \\

Now,its a quadratic equation,solve to find the value of x.

Apply Quadratic formula

\boxed{x_{1,2} =  \frac{ - b ±  \sqrt{ {b}^{2}  - 4ac} }{2a}}  \\  \\ here \: a = 13 \\ b = 73 \\ c = 46 \\  \\ x_{1,2}=  \frac{ - 73 ±  \sqrt{ {(73)}^{2}  - 4 \times 13 \times 46} }{2 \times 13} \\  \\x_{1,2} =  \frac{ - 73 ± \sqrt{ 5329  - 2392} }{26} \\  \\x_1 =  \frac{ - 73 +  54.2 }{26} \\  \\ x_1 =  \frac{ - 73 + 54.2}{26}  \\ \\  x_1 =  - 0.72 \\  \\ x_2 =  \frac{ - 73 - 54.2}{26}  \\  \\ x_2 = -4.89 \\  \\

Hope it helps you.

Similar questions