Math, asked by jadhavparth104, 1 month ago

2 / x + 1 / y = 10 and 3 / x + 2 / y = 1 solve simultaneous equation

Answers

Answered by BrainlyTwinklingstar
6

Answer

\sf \dashrightarrow \dfrac{2}{x} + \dfrac{1}{y} = 10 \: \: --- (i)

\sf \dashrightarrow \dfrac{3}{x} + \dfrac{2}{y} = 1 \: \: --- (ii)

Let \sf \dfrac{1}{x} be u.

Let \sf \dfrac{1}{y} be v.

So, the equations become

\sf \dashrightarrow 2u + 1v = 10

\sf \dashrightarrow 3u + 2v = 1

By first equation,

\sf \dashrightarrow 2u + 1v = 10

\sf \dashrightarrow 2u = 10 - 1v

\sf \dashrightarrow u = \dfrac{10 - 1v}{2}

Now, let's find the value of v by second equation.

\sf \dashrightarrow 3u + 2v = 1

\sf \dashrightarrow 3 \bigg( \dfrac{10 - 1v}{2} \bigg) + 2v = 1

\sf \dashrightarrow \dfrac{30 - 2v}{2} + 2v = 1

\sf \dashrightarrow \dfrac{30 - 2v + 4v}{2} = 1

\sf \dashrightarrow \dfrac{30 + 2v}{2} = 1

\sf \dashrightarrow 30 + 2v = 2

\sf \dashrightarrow 2v = 2 - 30

\sf \dashrightarrow 2v = -28

\sf \dashrightarrow v = \dfrac{-28}{2}

\sf \dashrightarrow v = -14

Now, let's find the value of u by first equation.

\sf \dashrightarrow 2u + 1v = 10

\sf \dashrightarrow 2u + 1(-14) = 10

\sf \dashrightarrow 2u - 14 = 10

\sf \dashrightarrow 2u - 14 = 30

\sf \dashrightarrow 2u = 30 + 14

\sf \dashrightarrow 2u = 44

\sf \dashrightarrow u = \dfrac{44}{2}

\sf \dashrightarrow u = 22

We know that,

\sf \dashrightarrow \dfrac{1}{x} = u

\sf \dashrightarrow \dfrac{1}{x} = 22

\sf \dashrightarrow 22x = 1

\sf \dashrightarrow x = \dfrac{1}{22}

We also know that,

\sf \dashrightarrow \dfrac{1}{y} = v

\sf \dashrightarrow \dfrac{1}{y} = -14

\sf \dashrightarrow -14y = 1

\sf \dashrightarrow y = \dfrac{1}{-14}

\sf \dashrightarrow y = \dfrac{-1}{14}

Hence, the values of x and y are 1/22 and -1/14 respectively.

Similar questions