Math, asked by anugrahangellal77782, 1 month ago

2/x+1/y=16, 3/x-2/y=-1 (simultaneous equations)​

Answers

Answered by ZaraAntisera
1

Answer:

\frac{2}{x}+\frac{1}{y}=16,\:\frac{3}{x}-\frac{2}{y}=-1\quad :\quad x=\frac{7}{31},\:y=\frac{7}{50},\:\quad \:y\ne \frac{1}{16},\:x\ne \:0,\:y\ne \:0

Step-by-step explanation:

\begin{bmatrix}\frac{2}{x}+\frac{1}{y}=16\\ \frac{3}{x}-\frac{2}{y}=-1\end{bmatrix}

\mathrm{Substitute\:}x=-\frac{2y}{1-16y}

\begin{bmatrix}\frac{3}{-\frac{2y}{1-16y}}-\frac{2}{y}=-1\end{bmatrix}

\begin{bmatrix}\frac{48y-7}{2y}=-1\end{bmatrix}

\mathrm{For\:}x=-\frac{2y}{1-16y}

\mathrm{Substitute\:}y=\frac{7}{50}

x=-\frac{2\cdot \frac{7}{50}}{1-16\cdot \frac{7}{50}}

x=\frac{7}{31}

\mathrm{The\:solutions\:to\:the\:system\:of\:equations\:are:}

x=\frac{7}{31},\:y=\frac{7}{50},\:\quad \:y\ne \frac{1}{16},\:x\ne \:0,\:y\ne \:0

Similar questions