Math, asked by srishtimishra983, 11 months ago

2/x+2 - 1/x+1 = 4/x+4 - 3/x+3​

Answers

Answered by Delta13
6

Question:

 \frac{2}{x + 2}  -  \frac{1}{x + 1}  =  \frac{4}{x + 4}  -  \frac{3}{x + 3}

Solution:

Cross multiplying

 \frac{2(x + 1) - 1(x + 2)}{x + 2(x  +  1)}  =  \frac{4(x + 3) - 3(x + 4)}{x + 4(x + 3)}  \\  \\  =  >  \frac{2x + 2   - x - 2}{ {x}^{2}  + x + 2x  +  2 } =  \frac{4x + 12 - 3x - 12}{ {x}^{2} + 3x + 4x + 12 }   \\  \\  =  >  \frac{x}{ {x}^{2}   + 3 x  +  2}  =  \frac{x}{ {x}^{2} + 7x + 12 }  \\   \\  =  >  \frac{ {x}^{2}  + 7x + 12}{ {x}^{2} + 3x  + 2 }  =  \frac{x}{x}  \\  \\  =  >  \frac{ {x}^{2} + 7x + 12 }{ {x}^{2} +3x + 2 }  = 1 \\  \\  =  >  {x}^{2}  + 7x + 12 =  {x}^{2}  +3 x  +  2 \\  \\  =  >  {x}^{2}  -   {x}^{2}  + 7x -3 x + 12  -  2 = 0 \\  \\  =  > 4x + 10 = 0 \\  \\  =  > 4x =  - 10\\  \\  =  > x =   \frac{ - 10}{4}  \\  \\  =  > x =  \frac{ - 5}{2}

Hope it helps you.

Similar questions