Math, asked by hsoma3292, 5 months ago

2^(x^2)=3^(x^2-4) let's solve​

Answers

Answered by Arceus02
4

Given:-

  •  {2}^{ {x}^{2} }  =   {3}^{ ({x}^{2}  - 4)}

\\

To find:-

  • The value of x.

\\

Answer:-

 {2}^{ {x}^{2} }  =   {3}^{ ({x}^{2}  - 4)}

Taking log on both sides,

  \longrightarrow  \log \big({2}^{ {x}^{2} } \big)  =    \log \big({3}^{ ({x}^{2}  - 4)}  \big)

  \longrightarrow   {x}^{2} \log \big({2} \big)  =    ( {x}^{2} - 4) \log \big({3}\big)

\longrightarrow  \dfrac{ {x}^{2}  - 4}{  {x}^{2}  }  = \dfrac{ \log(2)}{ \log(3)}

\longrightarrow  \dfrac{ {x}^{2} }{  {x}^{2}  } -  \dfrac{4}{ {x}^{2} }   = \dfrac{ \log(2)}{ \log(3)}

\longrightarrow  1 -     \bigg({ \dfrac{2}{x} \bigg) }^{2}    = \dfrac{ \log(2)}{ \log(3)}

\longrightarrow  1 -  \dfrac{ \log(2)}{ \log(3)}       = \bigg({ \dfrac{2}{x} \bigg) }^{2}

\longrightarrow   \dfrac{  \log(3) - \log(2)}{ \log(3)}       = \bigg({ \dfrac{2}{x} \bigg) }^{2}

\longrightarrow   \dfrac{  \log(3/2) }{ \log(3)}       = \bigg({ \dfrac{2}{x} \bigg) }^{2}

Taking square root on both sides,

\longrightarrow    \sqrt{\dfrac{  \log(3/2) }{ \log(3)}}       =    \sqrt{\bigg({ \dfrac{2}{x} \bigg) }^{2}}

\longrightarrow    \sqrt{\dfrac{  \log(3/2) }{ \log(3)}}       =     \pm \dfrac{2}{x}

\longrightarrow     \pm\dfrac{1}{2}  \sqrt{\dfrac{  \log(3/2) }{ \log(3)}}       =    \dfrac{1}{x}

\longrightarrow   \pm  2  \sqrt{\dfrac{  \log(3) }{ \log(3/2)}}       =    x

\\

Hence,

{\longrightarrow  \underline{ \underline{  x_{1}   = 2  \sqrt{\dfrac{  \log(3) }{ \log(3/2)}}   \approx  3.2921   }}}

{\longrightarrow  \underline{ \underline{  x_{2}   = -  2  \sqrt{\dfrac{  \log(3) }{ \log(3/2)}}   \approx - 3.2921   }}}

Similar questions