Math, asked by pratyushpritamsahoo2, 3 days ago

2^x+2^x^-1 = 24. find X please do it fast​

Answers

Answered by anindyaadhikari13
3

Solution:

Given That:

 \rm \longrightarrow {2}^{x} + {2}^{x - 1} = 24

Can be written as:

 \rm \longrightarrow {2}^{x} + {2}^{x} \cdot {2}^{ - 1}  = 24

Let us assume that:

 \rm \longrightarrow u = {2}^{x}

So, our equation becomes:

 \rm \longrightarrow u+ u\cdot {2}^{ - 1}  = 24

 \rm \longrightarrow u+ \dfrac{u}{2}  = 24

 \rm \longrightarrow \dfrac{2u + u}{2}  = 24

 \rm \longrightarrow \dfrac{3u}{2}  = 24

 \rm \longrightarrow u= 24 \times  \dfrac{2}{3}

 \rm \longrightarrow u= 16

Substituting the value of u here, we get:

 \rm \longrightarrow  {2}^{x} = 16

 \rm \longrightarrow  {2}^{x} = {2}^{4}

Comparing base, we get:

 \rm \longrightarrow x = 4

★ So, the value of x satisfying the given equation is 4.

Learn More:

Laws of exponents.

 \rm 1. \:  \:  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

 \rm 2. \:  \:  ({a}^{m})^{n}  =  {a}^{mn}

\rm 3. \:  \:  \dfrac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}

 \rm4. \:  \:  {a}^{m} \times  {b}^{m} =  {(ab)}^{m}

 \rm5. \: \:   \bigg(\dfrac{a}{b} \bigg)^{m}  =  \dfrac{ {a}^{m} }{ {b}^{m} }

 \rm6. \:  \:  {a}^{ - n} =  \dfrac{1}{ {a}^{n} }

 \rm7. \:  \:  {a}^{n} =  {b}^{n} \rightarrow a = b, n \neq0

 \rm8. \:  \:  {a}^{m} =  {a}^{n} \rightarrow m = n, a \neq 1

Similar questions