Math, asked by Anonymous, 2 months ago

(2^x + 22^x + 222^x)/(3^x + 33^x + 333^x) = 9/4

Answers

Answered by lucky099
11

\huge{\underline{\underbrace{\mathcal\color{gold}{Answer}}}}

\implies\bold{\dfrac{2^{x}+(22)^{x}+(222)^{x}}{3^{x}+(33)^{x}+(333)^{x}}=\dfrac{9}{4}   } 

\dashrightarrow \bold{\dfrac{2^{x}+(22)^{x}+(222)^{x}}{3^{x}+(33)^{x}+(333)^{x}}=[\dfrac{4}{9}]^{-1} } 

[/tex] [tex]\bold{\dfrac{2^{x}(1+11^{x}+111^{x})}{3^{x}(1+11^{x}+111^{x})}=((\dfrac{2}{3})^{{{2}}})^{{{-1}}}   } 

\longrightarrow\bold{\dfrac{2^{x}\cancel{(1+11^{x}+111^{x})}}{3^{x}\cancel{(1+11^{x}+111^{x})}}=(\dfrac{2}{3})^{-2}   } 

\rightsquigarrow \bold{\dfrac{2^{x}}{3^{x}}=(\dfrac{2}{3})^{-2}   } 

\rightsquigarrow \bold{(\dfrac{2}{3})^{x} =(\dfrac{2}{3})^{-2}   } 

\rightsquigarrow \bold{ x=-2  }

Answered by aayyuuss123
6

Step-by-step explanation:

\tt{\dfrac{2^{x}+(22)^{x}+(222)^{x}}{3^{x}+(33)^{x}+(333)^{x}}=\dfrac{9}{4}   } 

\tt{\dfrac{2^{x}+(22)^{x}+(222)^{x}}{3^{x}+(33)^{x}+(333)^{x}}=[\dfrac{4}{9}]^{-1} } 

\tt{\dfrac{2^{x}(1+11^{x}+111^{x})}{3^{x}(1+11^{x}+111^{x})}=((\dfrac{2}{3})^{{{2}}})^{{{-1}}}   } 

\tt{\dfrac{2^{x}\cancel{(1+11^{x}+111^{x})}}{3^{x}\cancel{(1+11^{x}+111^{x})}}=(\dfrac{2}{3})^{-2}   } 

\tt{\dfrac{2^{x}}{3^{x}}=(\dfrac{2}{3})^{-2}   } 

\tt{(\dfrac{2}{3})^{x} =(\dfrac{2}{3})^{-2}   } 

\tt{ x=-2  }

Similar questions