Math, asked by rajkingson1999, 1 year ago

2^x=3^y=12 then value of (x+2y)/xy

Answers

Answered by brunoconti
1

Answer:

Step-by-step explanation:

BRAINLIEST BRAINLIEST BRAINLIEST

Attachments:
Answered by sivaprasath
0

Answer:

1

Step-by-step explanation:

Given :

2^x = 3^y = 12

To find the value of :

\frac{x + 2y}{xy}

Solution :

log_{2}12 = x

log_2(2 \times 2 \times 3) = log_{2}(2^2 \times 3) = log_{2}2^2 + log_23 = 2log_22 + log_23= 2 + log_23

_

log_{3}12 = y

log_{3}12 = log_3(3 \times 2 \times 2) = log_33+log_3(2 \times 2)= 1 + log_34 = 1 + \frac{log_2{4}}{log_2{3}} = 1+\frac{2}{log_2{3}} = \frac{2 + log_23}{log_23}

_

\frac{x + 2y}{xy} = \frac{x}{xy} + \frac{2y}{xy} = \frac{1}{y} + \frac{2}{x}

\frac{1}{\frac{2+log_23}{2}} + \frac{1}{\frac{2+log_23}{log_23}}=\frac{2}{2+log_23} + \frac{log_23}{2+log_23} = \frac{2 + log_23}{2+log_23} = 1

Similar questions