Math, asked by archanadongre1984, 4 months ago

2/x + 3/y = 13; 5/x - 4/y = -2​

Answers

Answered by revathihariharan5
0

Answer:

step by step explanation right I don't know lol

Answered by Flaunt
141

\sf\huge\bold{\underline{\underline{{Solution}}}}

\sf \longmapsto \dfrac{2}{x}  +  \dfrac{3}{y}  = 13

\sf \longmapsto  \dfrac{5}{x}  -  \dfrac{4}{y}  =  - 2

Let 1/x be u and 1/y be v

New Equation obtained:

\sf \longmapsto2u + 3v = 13 - ( \times 5)

\sf \longmapsto5u - 4v =  - 2 - ( \times 2)

New Equation obtained:

10u+15v=65

10u-8v=-4

(-)(+)(+)

______________

23v=69

v=69/23=3

v=3

Put v's value in this Equation

2u+3×3=13

2u+9=13

2u=4

u=2

Now, we have assume u=1/x & v=1/y

\sf \longmapsto \: u =  \dfrac{1}{x}

\sf \longmapsto \: 2 =  \dfrac{1}{x}

\sf \boxed{\bold{ x = 2}}

Now ,v=1/y

\sf \longmapsto \: v =  \dfrac{1}{y}

\sf \longmapsto \: 3 =  \dfrac{1}{y}

\sf  \boxed{\bold{y = 3}}

Similar questions