Math, asked by crazyslayer61, 10 months ago

2^x=3^y=36^z, then prove that z-¹=2(x-¹+y-¹)​

Answers

Answered by ishwarsinghdhaliwal
0

Step-by-step explanation:

Let \:  {2}^{x} =   {3}^{y}  =  {6}^{2z \: }  = k \\ then  \\ 2 =  {k}^{ \frac{1}{x} }  \\ 3 = {k}^{ \frac{1}{y} }  \\ 6 = {k}^{ \frac{1}{2z} }  \\ we \: know \: that \:  \\ 2 \times 3 = 6  \:  \:  \:  \:  \:  \: .....(1)\\ {x}^{a}  \times  {x}^{b}  =  {x}^{a + b}  \:  \:  \:  \:  \: ....(2) \\ \:now \:  put \: the \: values \: of \: 2 \:  \:  \: 3 \:  \: and \: 6 \\  {k}^{ \frac{1}{x} }  \times  {k}^{ \frac{1}{y} }  =  {k}^{ \frac{1}{2z} }  \\  \frac{1}{x}  +  \frac{1}{y}  =  \frac{1}{2z}  \\  {x}^{ - 1 }  +  {y}^{ - 1}  =    \frac{ {z}^{ - 1} }{2}  \\2( {x}^{ - 1 }  +  {y}^{ - 1}  )=    {z}^{ - 1}

Similar questions