Math, asked by Befikri19, 3 months ago

2 x
4tan x (1 - tanºx)
tan 4x =
1-6 tan” x + tan* x
4​

Answers

Answered by mathdude500
2

Answer:

\bf \large\underbrace\orange{Question \: Correct:}

\bf \:To \:  prove :- tan4x =\dfrac{2tanx(1 -  {tan}^{2} x)}{1 +  {tan}^{4} x - 6 {tan}^{2} x}

\bf \large\underbrace\orange{Answer:}

\bf\underbrace\orange{Identity Used :}

\bf \:tan2x = \dfrac{2tanx}{1 -  {tan}^{2} x}

\bf\underbrace\orange{Solution:}

Consider LHS

\bf \:tan4x

\bf\implies \:tan2(2x)

\bf\implies \:\dfrac{2tan2x}{1 -  {tan}^{2} 2x}

\bf\implies \:\dfrac{\dfrac{2tanx}{1 -  {tan}^{2} x} }{1 -  {(\dfrac{2tanx}{1 -  {tan}^{2} x}) }^{2}  }

\bf\implies \:\dfrac{2tan}{1 -  {tan}^{2} x}  \times \dfrac{ {(1 -  {tan}^{2}x) }^{2} }{ {(1 -  {tan}^{2} x)}^{2}  - 4 {tan}^{2}x }

\bf\implies \:\dfrac{2tanx(1 -  {tan}^{2} x)}{1 +  {tan}^{4}x - 2 {tan}^{2} x - 4 {tan}^{2}x  }

\bf\implies \:\dfrac{2tanx(1 -  {tan}^{2} x)}{1 +  {tan}^{4} x - 6 {tan}^{2} x}

_____________________________________________

Similar questions