Math, asked by aastha197, 1 year ago

2^x-7*5^x-4=1250 find x

Answers

Answered by ayush5763
4
first of all. Find factor of 1250
1250=2×5×5×5×5
so,
2^(x-7)=2or5^(x-4)=2×5×5×5×5
this is possible only when
2^(x-7)=2or5^(x-4)=4
(x-7)=1 or x-4 = 4
x=8
Answered by Anonymous
0

Correct question:

\longrightarrow\rm{2^{(x - 7)} \times 5^{(x - 4)} = 1250}

Required answer:

\longrightarrow\rm{2^{(x - 7)} \times 5^{(x - 4)} = 1250}

\longrightarrow\rm{1250 = 2 * 5 * 5 * 5 * 5}

\longrightarrow\rm{2^{(x - 7)} \times 5^{(x - 4)} = 2^{1} \times 5^{4}}

ㅤ ㅤ

\longrightarrow\rm{x - 7 = 1}

Transposing 7 to the other the other side, we get:

\longrightarrow\rm{x = 7 + 1}

{\longrightarrow{\boxed{\rm{x = 8}}}}

Therefore, 8 is the required value of x in the given expression.

Similar questions