Math, asked by snowsharma79, 4 months ago

2(x/x+1)^2-5(x/x+1)+2=0,x is not equal to -1​

Answers

Answered by bson
5

Step-by-step explanation:

let x/x+1 =y

2y²-5y+2 =0

2y²-4y-y+2 =0

2y(y-2) -1(y-2) =0

(2y-1)(y-2)=0

y=1/2, 2

x/(x+1) = 2

x=2x+2

x=-2

x/x+1 = 1/2

2x = x+1

x = 1

Answered by Arceus02
8

Given:-

  •  \sf 2  {\bigg( \dfrac{x}{x + 1}  \bigg)}^{2}  - 5\bigg( \dfrac{x}{x + 1}  \bigg) + 2 = 0
  •  \sf x \ne - 1

\\

To find:-

  • The values of x.

\\

Answer:-

Given that,

 \sf 2  {\bigg( \dfrac{x}{x + 1}  \bigg)}^{2}  - 5\bigg( \dfrac{x}{x + 1}  \bigg) + 2 = 0

Let \sf  \dfrac{x}{x + 1}  be \sf a.

 \sf  \longrightarrow 2  {a}^{2}  - 5a + 2 = 0

On splitting the middle term,

 \sf  \longrightarrow 2  {a}^{2}  - 4a - a + 2 = 0

 \sf  \longrightarrow 2a(a - 2) -( a  -  2) = 0

 \sf  \longrightarrow (a - 2)(2a - 1)  = 0

So,

If (a - 2) = 0,

 \sf \: a = 2

Substituting the value of \sf a which we assumed earlier,

 \sf \longrightarrow  \dfrac{x}{x + 1}   = 2

 \sf \longrightarrow  x = 2(x + 1)

 \sf \longrightarrow  x = 2x + 2

 \longrightarrow \underline{ \underline{ \sf { \green{ x_{1} =  - 2}}}}

\\

If (2a -1) = 0,

 \sf \: a =  \dfrac{1}{2}

Substituting the value of \sf a which we assumed earlier,

 \sf \longrightarrow  \dfrac{x}{x + 1}   =  \dfrac{1}{2}

 \sf \longrightarrow  2x = x + 1

 \longrightarrow \underline{ \underline{ \sf { \green{ x_{2} =  1}}}}

Similar questions