Math, asked by chennurishylaja, 2 months ago

2-x/ x-5= -3/7 what is the correct answer for this only answer no spammer.

Answers

Answered by VεnusVεronίcα
15

\large \bf{\red {Solution...}}

 :  \implies \bf{ \dfrac{2 - x}{x - 5} =  \dfrac{ - 3}{7}  }

Cross multiplying them :

 :  \implies \bf{7(2 - x) =  - 3(x - 5)}

 :  \implies  \bf{14 - 7x =  - 3x + 15}

 :  \implies  \bf{14 - 15 =  - 3x + 7x}

 :  \implies  \bf{ - 1 = 4x}

 :  \implies  \bf{x =  \dfrac{ - 1}{4} }

 \\

\large \bf {\red{Verification....}}

 :  \implies \bf \dfrac{2 -  \bigg( \dfrac{ - 1}{4} \bigg) }{ \bigg( \dfrac{ - 1}{4} \bigg) - 5 } =  \dfrac{ - 3}{7}

LCM of 1 and 4 is 4 :

 :  \implies  \bf \dfrac{ \bigg( \frac{9}{4}  \bigg)}{ \bigg(  - \frac{ 21}{4} \bigg )}

Division by reciprocal :

 :  \implies  \bf \dfrac{9}{4}  \times   \bigg( - \dfrac{4}{ 21}  \bigg)

4 in the denominator gets cancelled with 4 in the numerator :

 :  \implies\bf \dfrac{9}{ \cancel4}  \times  \bigg(  - \dfrac{   \cancel4}{21}  \bigg)

 :  \implies\bf -  \dfrac{9}{21}

 :  \implies \bf \dfrac{ - 3}{7}  =  \dfrac{ - 3}{7}

LHS = RHS

Henceforth, verified!

Similar questions