Math, asked by deepakkarthika2001, 9 months ago

2/x+y + 5/x-y = 3
7/x+y - 2/x-y = 4

Answers

Answered by Anonymous
0

Answer:

x = 9/4 and y = -3/4

Step-by-step explanation:

 \frac{2}{x + y}  +  \frac{5}{x - y}  = 3 \\  \\  \frac{7}{x + y}  -  \frac{2}{x - y}  = 4 \\  \\ taking  \\ \:  \frac{1}{x + y}  = u \:  \:  \\ and \: \\  \frac{1}{x - y} = v \:  \\ we \: have \:  \\ 2u + 5v = 3      \\  \implies2u = 3 - 5v \\  \implies \: u =  \frac{3 - 5v}{2} -  -  - (1) \\  again \\ 7u - 2v = 4  -  -  - (2)\\  \implies7( \frac{3 - 5v}{2} ) - 2v = 4 \\  \implies \frac{21 - 35v - 4v}{2}  = 4 \\  \implies - 39v =  - 21 + 8\\  \implies - 39v =  - 13 \\  \implies \: v =  \frac{1}{3}  \\ using \: the \: value \: of \: v \: in \: (1) \\   u =  \frac{3 - 5( \frac{1}{3} )}{2}  \\ \implies u =  \frac{ \frac{9 - 5}{3} }{2}  \\  \implies \: u =  \frac{4}{3 \times 2}  \\  \implies \: u \:  =  \frac{2}{3}

Now we have

u =  \frac{1}{x + y}  \\  \implies \frac{2}{3}  =  \frac{1}{x + y}  \\  \implies \: x + y =  \frac{3}{2}   -  - -  (3)\\ and \: \\   \implies \: v =  \frac{1}{3}  \\  \implies \frac{1}{x  - y }  =  \frac{1}{3}  \\  \implies \: x - y = 3  -  -  - (4)\\  \\ (3) + (4)  \\  \implies2x =  \frac{3 + 6}{2}  \\  \implies \: x =  \frac{9}{4}  \\ and \\ \implies y =  \frac{3}{2}  -  \frac{9}{4}  \\  \implies \: y =  \frac{6 - 9}{4}  \\  \implies \: y =  \frac{ - 3}{4}

Similar questions