Math, asked by bismapari8865, 9 months ago

2, x,y are in g.p and 6 is the A.M between x and y find the value of x and y

Answers

Answered by rishu6845
11

Answer:

 \boxed{ \pink{ \huge{x =  - 6 \: and \: y =  18}}} \\  \boxed{ \pink{ \huge{x = 4 \: and \: y =8}}}

Step-by-step explanation:

 \bold{\large{\red{\underline{ Given}}}} \longrightarrow \\ 2 ,\: x, \: y \: are \: in \: GP \: and \:   \\ 6 \: is \: AM \: between \: x \: and \: y \\ \bold{  \underline{\large{\red{To \: find }}}} \longrightarrow \\ value \: of \: x \: and \: y \\  \bold{ \underline{\large{\red{Concept \: used}}}} \longrightarrow \\ if \: a \:, b \: and \: c \: are \: in \: GP \\  {b}^{2}  = ac \\ if \: p \: is \: AM \: between \: a \: and \: b \\ p =  \dfrac{a + b}{2}  \\  \bold{ \underline{\large{\red{Solution}}}} \longrightarrow \\ 2, \: x, \: y \: are \: in \: GP \\  {x}^{2}  = 2y \\ now \: 6 \: is \: AM \: of \: x \: and \: y \\  \dfrac{x + y}{2}  = 6 \\ x + y = 12 \\ putting \: y \:  =  \frac{ {x}^{2} }{2}  \: in \: it \: we \: get \\ x +   \frac{ {x}^{2} }{2}  = 12 \\  =  >  {x}^{2}  + 2x = 24 \\  =  >  {x}^{2}  + 2x - 24 = 0 \\  =  >  {x}^{2}  + (6 - 4)x - 24 = 0 \\  =  >  {x}^{2}  + 6x - 4x - 24 = 0 \\  =  > x(x + 6) - 4(x + 6) = 0 \\  =  > (x + 6)(x - 4) = 0 \\  if \: \:  \:  \:  x + 6 = 0 \\  =  > x =  - 6 \\ now \\   \:  \:  \:  \:  \:  \:  \: {x}^{2}  = 2y \\  =  >  {( - 6)}^{2}  = 2y \\  =  > 2y = 36 \\  =  > y = 18 \\ if \:  \:  \: x - 4 = 0 \\  =  > x = 4 \\ now \\ \:  \:  \:  \:  \:   {x}^{2}  = 2y \\  =  >  {(4)}^{2}  = 2y \\  =  > 2y = 16 \\  =  > y = 8

Similar questions