Math, asked by kb570659, 9 months ago

2. x,y are the zeros of the polynomial f(x) = 4x + 3x + 7, then 1/x+1/y​

Answers

Answered by usharmavn
1

Answer:

Step-by-step explanation:

1/x + 1/y

taking lcm we get

(x+y)/xy

we know that sum of zeroes of polynomial ax2 + bx + c = 0

is -b/a

and product is c/a

answer = -b/c = -3/4

CHEERS MATE, PLEASE MARK ME BRAINLIEST

Answered by CharmingPrince
7

\huge{\bigstar}{ \green{ \mathfrak{ \underline{ \underline{Question}}}}}{\bigstar}

□☆□☆□☆□☆□☆□☆□☆□☆□☆□

If\: x,\:y \: are\: the\: zeros \:of \:the\: polynomial \\ f(x) = 4x + 3x + 7, \:then \:find\: \displaystyle{\frac{1}{x}}+\displaystyle{\frac{1}{y}}

□☆□☆□☆□☆□☆□☆□☆□☆□☆□

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

\huge{\bigstar}{ \green{ \mathfrak{ \underline{ \underline{Answer}}}}}{\bigstar}

\boxed{\red{\bold{Sum\: of \: zeroes:}}}

\purple{\implies x + y = \displaystyle{\frac{-b}{a}}}

\purple{\implies}x + y= \displaystyle{\frac{-3}{4}}

\boxed{\red{\bold{Product \: of \: zeroes:}}}

{\purple{\implies xy= \displaystyle{\frac{c}{a}}}}

{\purple{\implies}}xy = \displaystyle{\frac{7}{4}}

\boxed{\red{\bold{Simplyfing \:expression:}}}

\green{\implies \displaystyle{\frac{1}{x}} + {\frac{1}{y}}}

\green{\implies}\displaystyle{\frac{x+y}{xy}}

\green{\implies}\displaystyle{\frac{-3}{4}} ÷ \frac{7}{4}

\green{\implies \boxed{\bold{\displaystyle{\frac{-3}{7}}}}}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Similar questions