Math, asked by gungun6393688, 6 months ago

2
( x3 cos 2x + 2 1 √4-x2 dx


-2​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \int _{ - 2}^{2} ( {x}^{3}  \cos( \frac{x}{2} )   +  \frac{1}{2} ) \sqrt{4 -   {x}^{2}  } dx \\

 = \int _{ - 2}^{2} {x}^{3}  \cos( \frac{x}{2} )  \sqrt{4 -  {x}^{2} } dx - \int _{ - 2}^{2} \frac{1}{2}  \sqrt{4 -  {x}^{2} } dx \\

since \:  \:  {x}^{3}  \cos( \frac{x}{2} )  \sqrt{4 -  {x}^{2} }  \:  \: is \:  \:  a \:  \: odd \:  \: function

so,

\int _{ - 2}^{2} {x}^{3}  \cos( \frac{x}{2} )  \sqrt{4 -  {x}^{2} } dx = 0 \\

so, required integral is

 =  - \frac{1}{2}  \int _{ - 2}^{2} \sqrt{4 -  {x}^{2} } dx \\

 =  -  \frac{1}{2}  \times 2\int _{ 0}^{2} \sqrt{ {(2)}^{2} -  {(x)}^{2}  } dx \\

  =  -  [ \frac{x}{2} \sqrt{4 -  {x}^{2} }  ] _{ 0}^{2} - [ \frac{4 }{2}  \sin^{ - 1} ( \frac{x}{2} ) ]_{0}^{2} \\

 = -  [ \frac{2}{2} \sqrt{4 -  {2}^{2} }  ] - [ \frac{4 }{2}  \sin^{ - 1} ( \frac{2}{2} ) ]  + 0 \\

 =  -  {\pi} \\

Similar questions