Math, asked by satyambhardwaj324, 2 months ago

20.A and B are zeroes of x2-
6x+k.what is k if 3A+2B=20​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:A \: and \: B \: are \: zeroes \: of \:  {x}^{2} - 6x + k

We know,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\bf\implies \:A + B =  - \dfrac{( - 6)}{1}  = 6 -  -  - (1)

And

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\bf\implies \:AB = \dfrac{k}{1} = k -  -  - (2)

Also,

Given that

\rm :\longmapsto\:3A + 2B = 20

\rm :\longmapsto\:A + 2A + 2B = 20

\rm :\longmapsto\:A + 2(A + B) = 20

\rm :\longmapsto\:A + 2(6) = 20 \: \:  \:  \:  \:  \:  \:   \:  \:  \:  \{ \because \:A + B = 6 \}

\rm :\longmapsto\:A + 12 = 20

\rm :\longmapsto\:A  = 20 - 12

\bf\implies \:A = 8 -  -  - (3)

On substituting A = 8 in equation (1), we get

\rm :\longmapsto\:8 + B = 6

\rm :\longmapsto \:  B = 6 - 8

\bf\implies \:B =  - 2 -  -  - (4)

On substituting the values of A and B in equation (2), we get

\rm :\longmapsto\:k = 8 \times ( - 2)

\bf\implies \:k \:  =  \:  -  \: 16

Additional information :-

\rm :\longmapsto\: {A}^{2}  +  {B}^{2}  =  {(A + B)}^{2}  - 2AB

\rm :\longmapsto\: {A}^{3}  +  {B}^{3}  =  {(A + B)}^{3}  - 3AB(A + B)

\rm :\longmapsto\: {(A - B)}^{2}  =  {(A + B)}^{2}  - 4AB

Similar questions