20.
ABC is a right triangle right angled at 'C'. If BC = a, CA = b.
AB=c and 'p' be the length of perpendicular from 'c' to
'AB', then.
A.1/p²=1/a²+1/b²
B.1/p²=1/b²-1/a²
C.1/p²=1/a²-1/b²
D.1/p²=1/a²+1/b²
Answers
Answered by
1
Step-by-step explanation:
Correct option is
A
True
Let CD⊥AB. Then, CD=p
∴ Area of ΔABC=
2
1
(Base×Height)
=
2
1
(AB×CD)=
2
1
cp
Also,
Area of ΔABC=
2
1
(BC×AC)=
2
1
ab
∴
2
1
cp=
2
1
ab
⇒cp=ab
(ii) Since ΔABC is a right triangle, right angled at C.
∴AB
2
=BC
2
+AC
2
⇒c
2
=a
2
+b
2
⇒(
p
ab
)
2
=a
2
+b
2
[∵cp=ab⇒c=
p
ab
]
⇒
p
2
a
2
b
2
=a
2
+b
2
⇒
p
2
1
=
b
2
1
+
a
2
1
⇒
p
2
1
=
a
2
1
+
b
2
1
Similar questions