Math, asked by manoj2278877, 2 months ago


20. Find the equation of the circle passing through the points (5,-8) (2,-9),(2,1)​

Answers

Answered by mathdude500
2

\large\underline{\bold{Solution-}}

 \sf \: Let \: us \: consider \: the \: equation \: of \: circle \: as

 \sf \:  {x}^{2}  +  {y}^{2}  + 2gx + 2fy + c = 0 -  -  - (1)

Since, (1) passes through (5, - 8).

Therefore,

 \sf \:  {(5)}^{2}  +  {( - 8)}^{2}  + 2g \times (5) + 2f \times ( - 8) + c = 0

 \sf \: 25 + 64 + 10g - 16f + c = 0

\bf\implies \:10g - 16f + c =  - 89 -  -  - (2)

Again, (1) passes through (2, - 9)

Therefore,

 \sf \:  {(2)}^{2}  +  {( - 9)}^{2}  + 2g \times (2) + 2f \times ( - 9) + c = 0

 \sf \: 4 + 81 + 4g - 18f + c = 0

\bf\implies \:4g - 18f + c =  - 85 -  -  - (3)

Also, (1) passes through (2, 1)

Therefore,

 \sf \:  {(2)}^{2}  +  {(1)}^{2}  + 2g \times 2 + 2f \times 1 + c = 0

 \sf \: 4 + 1 + 4g + 2f + c = 0

\bf\implies \:4g + 2f + c =  - 5 -  -  - (4)

Now,

Subtracting equation (4) from equation (3), we get

 \sf \:  - 20f =  - 80

\bf :\implies\:f \:  =  \: 4 -  -  - (5)

Now,

Subtracting equation (3) from equation (2),we get

\rm :\longmapsto\:6g + 2f =  - 4

\rm :\longmapsto\:6g + 2 \times 4 =  - 4 \:  \:  \:   \:  \:  \:  \: \:  \{ \because \: f \:  =  \: 4 \}

\rm :\longmapsto\:6g + 8 =  - 4

\rm :\longmapsto\:6g =  - 4 - 8

\rm :\longmapsto\:6g =  - 12

\bf\implies \:g  \: =  \:  -  \: 2 -  -  - (6)

On substituting the values of g and f in equation (5), we get

\rm :\longmapsto\:4 \times ( - 2)+ 2 \times ( 4) + c =  - 5

\rm :\longmapsto\:- 8 + 8+ c =  - 5

\bf\implies \:c \:  =  \:  - 5-  -  - (7)

Now, Substitute the values of g, f and c in equation (1), the required equation of circle is

\bf :\longmapsto\: {x}^{2}  +  {y}^{2}  - 4x + 8y - 5 = 0

Additional Information :-

 \sf \: Let \: us \: consider \: the \: equation \: of \: circle \: as

 \sf \:  {x}^{2}  +  {y}^{2}  + 2gx + 2fy + c = 0  \: then

\rm :\longmapsto\:Centre = ( - g, , - f)

and

\rm :\longmapsto\:radius \:  =  \:  \sqrt{ {g}^{2} +  {f}^{2} - c  }

Similar questions