Math, asked by monilbariya2003, 7 months ago

(20 ) If 77Cr is maximum then r = ………….

(A) 38 (B) 38.5 (C) 39 (D) 4

Answers

Answered by pulakmath007
4

SOLUTION

TO CHOOSE THE CORRECT OPTION

 \sf{ {}^{77}C_r \:  \: is \: maximum \: when  \: \: r =  }

(A) 38

(B) 38.5

(C) 39

(D) 4

CONCEPT TO BE IMPLEMENTED

We know that

When n is even

 \displaystyle \sf{ {}^{n}C_r \:  \: is \: maximum \: when  \: \: r =   \frac{n}{2} }

When n is odd

 \displaystyle \sf{ {}^{n}C_r \:  \: is \: maximum \: when  \: \: r =   \frac{n - 1}{2} \:  \: and \:  \: r =  \frac{n + 1}{2}  }

EVALUATION

Here the given expression is

 \sf{ {}^{77}C_r \:    }

So n = 77 which is odd

Hence

 \sf{ {}^{77}C_r \:  \: is \: maximum \: when  \: \:  }

 \displaystyle \sf{r =  \frac{77 - 1}{2}    \:  \: and \:  \:  \frac{77 + 1}{2} }

 \displaystyle \sf{ \implies \: r =  \frac{76}{2}    \:  \: and \:  \:  \frac{78}{2} }

 \displaystyle \sf{ \implies \: r =  38    \:  \: and \:  \: 39}

Since

 \displaystyle \sf{ {}^{n}C_r = {}^{n}C_{n - r}}

 \implies \displaystyle \sf{ {}^{77}C_{38} = {}^{77}C_{77 - 38}}

 \implies \displaystyle \sf{ {}^{77}C_{38} = {}^{77}C_{39}}

Hence the correct options are

(A) 38 and (C) 39

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If nPr = 3024 and nCr = 126

then find n and r.

https://brainly.in/question/29044585

2. If nP4 = 14 n-2P3; find the value of n.

https://brainly.in/question/19732517

Similar questions