Math, asked by laasyasbodh2000, 9 months ago

20. If (a+b)=10 and ab=10 then the value of (a-b) is​

Answers

Answered by EliteSoul
7

Given

❒ a + b = 10

❒ ab = 10

To find

a - b = ?

Solution

This question is completely based on algebraic formulas.

Let's start with what is given..

➜ a + b = 10

❍ Squaring both sides :

➜ (a + b)² = 10²

[Identity : (a + b)² = (a - b)² + 4ab]

➜ (a - b)² + 4ab = 100

➜ (a - b)² + 4 × 10 = 100

➜ (a - b)² = 100 - 40

➜ (a - b)² = 60

➜ a - b = √60

➜ a - b = √(4 × 15)

a - b = 215 (Answer)

Therefore, value of (a - b) = 215

________________

Some more identities :

  • (a + b)² = a² + 2ab + b²
  • (a - b)² = a² - 2ab + b²
  • a² + b² = (a + b)² - 2ab
  • a² + b² = (a - b)² + 2ab
  • a² - b² = (a + b)(a - b)
  • (a - b)² = (a + b)² - 4ab
Answered by ItzShinyQueen13
3

\pink{\bf{\underline{Given:-}}}

\tt{(a + b) = 10}

\tt{ab = 10}

\purple {\bf {\underline {To\:Find:-}}}

\tt {The\:value\:of\:(a - b)}

\huge\red{\bf {\underline {Solution:-}}}

\tt { (a + b) = 10}

⇒  \tt{{(a + b)}^{2}  =  {10}^{2} }

⇒ \tt{(a - b)^{2} + 4ab  = 100 }

⇒ \tt{(a - b)^{2}  + 4 \times 10 = 100}

⇒ \tt{( {a - b)}^{2} + 40 = 100 }

⇒ \tt{(a - b)^{2} = 100 - 40  }

⇒ \tt{(a - b)^{2} = 60 }

⇒ \tt{a - b =  \sqrt{60} }

⇒ \tt{a - b =  2\sqrt{15}}

\bold\blue {\bf{Hence,\:the\:value\:of\:(a-b)\:is\:  2\sqrt{15}}}

Similar questions