20.If a + b + c = 0, then prove that a4 + b4 + c4 = 2(b2c2 + c2a2 + a2b2)
Answers
Answered by
1
answer
ok
step by step ok
Answered by
0
Answer:
Squaring on both sides of the relation,
= (a² + b² + c²)² = [-2(bc + ca + ab)²]
= 4 {b²c² + c²a² + a²b² + 2} {bc. ca + ca. ab + ab. bc}
= 4 (b²c² + c²a² + a²b²) + 8abc (a + b + c)
= 4 (b²c² + c²a² + a²b²),
∵ a + b + c = 0
∴ 2 (b²c² + c²a² + a²b²) = (a² + b² + c²)²
And also (a² + b² + c²)² = + 2 (b²c² + c²a² + a²b²),
⇒ 4 (b²c² + c²a² + a²b²) = + 2 (b²c² + c²a² + a²b²)
Hence, = 2 (b²c² + c²a² + a²b²)
Similar questions