Math, asked by arjunkhokhar47, 10 months ago

20.If a + b + c = 0, then prove that a4 + b4 + c4 = 2(b2c2 + c2a2 + a2b2)​

Answers

Answered by anandtiwari9324
1

answer

ok

step by step ok

Answered by bhavani2000life
0

Answer:

Squaring on both sides of the relation,

= (a² + b² + c²)² = [-2(bc + ca + ab)²]

= 4 {b²c² + c²a² + a²b² + 2} {bc. ca + ca. ab + ab. bc}

= 4 (b²c² + c²a² + a²b²) + 8abc (a + b + c)

= 4 (b²c² + c²a² + a²b²),

∵ a + b + c = 0

∴ 2 (b²c² + c²a² + a²b²) = \frac{1}{2} (a² + b² + c²)²

And also (a² + b² + c²)² = (a^{4} + b^{4} +c^{4} ) + 2 (b²c² + c²a² + a²b²),

⇒ 4 (b²c² + c²a² + a²b²) = (a^{4} + b^{4} +c^{4} ) + 2 (b²c² + c²a² + a²b²)

Hence,  (a^{4} + b^{4} +c^{4} ) = 2 (b²c² + c²a² + a²b²)

Similar questions