Math, asked by totagibalappa189, 7 months ago

20. If one angle of a triangle is 56' and
the difference of the other two
angles is 20', then find the other two
angles.
*​

Answers

Answered by prmaurya1984
0

\sf{\bold{\purple{\star{\underline{\underline{given}}}}}}

One angle of a triangle = 56°

Diff. btw other 2 angles = 20°

⠀⠀⠀⠀

\sf{\bold{\purple{\star{\underline{\underline{To\: find}}}}}}⋆

Other 2 unknown angles = ??

⠀⠀⠀⠀

\sf{\bold{\purple{\star{\underline{\underline{Solution}}}}}}

Let the angle be x

⠀⠀⠀⠀

Other angle = x + 20

⠀⠀⠀⠀

\sf{\star{\boxed{\orange{\frak{ Sum\: of \: all \: all \: angles\: of \: triangle = \: 180}}}}}

\sf : \implies\:{\frak{ x + x + 20+ 56 = 180 }}

\sf : \implies\:{\frak{ x + x + 76 = 180 }}:⟹x+x+76=180

\sf : \implies\:{\frak{ 2x + 76 = 180 }}:⟹2x+76=180

\sf : \implies\:{\frak{ 2x = 180 - 76 }}:⟹2x=180−76

\sf : \implies\:{\frak{ 2x = 104 }}:⟹2x=104

</p><p>	\sf : \implies\:{\frak{ x = \dfrac{104}{2}}}:⟹x=  \frac{2}{104} </p><p>

\sf : \implies\:{\frak{ x = 52 }}:⟹x=52

\sf{\star{\boxed{\blue{\frak{ x = 52 }}}}}⋆ </p><p>x=52

putting value of x in angles

⠀⠀⠀⠀

1st unknown angle

 = x = \sf{\dag{\boxed{\pink{\frak{ 52 }}}}}† </p><p>52

2nd unknown angle

= x + 20 = 52 + 20 = \sf{\dag{\boxed{\pink{\frak{ 72 }}}}}† </p><p>72</p><p>

hope it helps........

Answered by XxCynoSurexX
2

 \huge \red {\underbrace \mathfrak{Answer :}}

Given:-

  • One angle of a triangle = 56°
  • Different between other 2 angles = 20°

To Find:-

  • Other 2 unknown angles = ?

 \huge {\fbox \red{Solution :}}

  • Let the angle be x
  • Other angle = x + 20

Sum of all the angles of triangles = 180°

→ x + x + 20 + 56 = 180

→ x + x + 76 = 180

→ 2x + 76 = 180

→ 2x = 180 - 76

→ 2x = 104

→ x = 104/2

→ X = 52

  • putting value of x in angles

1st unknown angle = x = +52

2nd unknown angle = x + 20 = 52 +20 = +72

Step-by-step explanation:

❥︎❥︎❥︎❥︎❥︎❥︎❥︎❥︎❥︎❣︎❣︎❣︎❣︎❣︎❣︎❣︎♡︎♡︎♡︎♡︎♡︎♡︎♡︎♡︎♡︎

Similar questions