Math, asked by sdvadekar, 6 months ago

20. In a right angled triangle ABC,ZB = 90°. If AB =8em,
AC= 17cm find BC.

Answers

Answered by niralikumari126
1

Answer:

The answer is=15 cm

Step-by-step explanation:

Here, we will use Pythagoras theorem,

So, according to Pythagoras theorem,

=(Height)^2+(Base)^2=(Hypotenuse)^2

=So, according to question;

=(AB)^2+(BC)^2=(AC)^2

=So,(BC)^2=(AC)^2-(BC)^2

= (BC)^2=(17)^2-(8)^2

=(BC)^2=289-64

=(BC)^2=225

=(BC) =√225

=(BC)=15 cm..

I'm sending an attachment with this, hope it helps...

And please mark me as brainliest...

Attachments:
Answered by ItzDαrkHσrsє
11

\large{\underline{\sf{\blue{Given-}}}}

  • \sf{\angle \: B \: = 90°}

  • \sf{AB \:  =  \: 8 \: cm}

  • \sf{AC \:  =  \: 17cm}

\large{\underline{\sf{\red{To \: Find-}}}}

  • \sf{BC \: = \: ?}

\large{\underline{\sf{\orange{Diagram-}}}}

\setlength{\unitlength}{2mm}\begin{picture}(0,0)\thicklines\put(0,0){\line(0,3){2.2cm}}\put(0,0){\line(3,0){1.8cm}}\put(9,0){\line(-5,6){1.8cm}}\put(-2,-2){\sf B}}\put(-2,11){\sf A}\put(10,-2){\sf C}\put(-5,5){\sf 8 cm}\put(6,5){\sf 17cm}\put(1,0){\line(0,2){2mm}}\put(0,1){\line(3,0){2mm}}\put(1,1){$\small\sf 90^\circ $}\end{picture}

\large{\underline{\sf{\purple{Solution-}}}}

\sf\underline{We \: Know \: Pythagoras \: Theorem,}

\boxed{\sf \green{★ \:  {AC}^{2} \:  =  \:  {AB}^{2}   +  {BC}^{2} }}

\sf\underline{Placing \: Values,}

\sf\longrightarrow{  {17}^{2}  =  \:  {8}^{2}  +  \:  {(BC)}^{2} }

\sf\longrightarrow{189 = 64 +  {(BC)}^{2} }

\sf\longrightarrow{( {BC)}^{2}  = 189  +  64}

\sf\longrightarrow{( {BC)}^{2}  = 225}

\sf\longrightarrow{( {BC)}^{2}  =  \sqrt{225} }

\boxed{\sf\red{★  \: BC = 15cm}}

\sf\therefore \: \underline{Length \: Of \: BC \: Is \: 15cm.}</p><p>

Similar questions