Chemistry, asked by rakeshspandya, 1 month ago

20 ml of 0.1 M, 30 ml of 0.2 M and 30 ml of 0.3 M
solutions of oxalic acid are mixed and the volume
is made 100 ml. The molarity of the resulting
solution is
(2) 8.51 M
(1) 0.21 M
(3) 5.67 M
(4) 0.17 M​

Answers

Answered by patelrakesh5789
0

Answer:

give reason for the following Aluminium is found in free state but iron is notgive reason for the following Aluminium is found in free state but iron is notgive reason for the following Aluminium is found in free state but iron is not

Answered by Anonymous
32

 \rm \huge {Answer:-}

______________________

 \sf \red{\underline{\underline{Given:-}}}

★20 ml of 0.1 M, 30 ml of 0.2 M and 30 ml of 0.3 M solutions of oxalic acid are mixed and the volume is made 100 ml.

________________________

 \sf \blue{\underline{\underline{To\: Find:-}}}

★The molarity of the resulting solution=?

_______________________}

 \sf \pink{\underline{\underline{Consideration:-}}}

★Now,let's say 3 solutions of oxalic acid with certain volumes are mixed and the total volume is made up to 100ml.

★Solution 1+Solution 2+solution 3=Final solution

________________________

 \sf \purple{\underline{\underline{We\: know:-}}}

\small \implies{Molarity(M)=\dfrac{No\: of\: moles(n)}{Volume\: in\: litres(v)}}

★As the molarity and volume of the solutions are given,no of moles are to be determined.

________________________

Solution 1:-

 \dashrightarrow{20\: ml\:of\: 0.1\: M}

 \bf {Molarity (M_{1})=0.1}

 \bf {volume(v_{1})=20ml}

★As we need the volume in litres,

 \bf {1ml=\frac{1}{1000}litres}

 \bf {v_{1}=\frac{20}{1000}litres}

 \bf {v_{1}=0.02litres}

 \colon \dashrightarrow\bf{Molarity(M_{1})=\frac{n_{1}}{v_{1}}}

 \colon \dashrightarrow\bf{0.1=\frac{n_{1}}{0.02litres}}

 \colon \dashrightarrow\bf{n_{1}=0.1\times0.02litres}

 \implies \bf\green{n_{1}=0.002}

________________________

Solution 2:-

 \dashrightarrow{30\: ml\:of\: 0.2\: M}

 \bf {Molarity (M_{2})=0.2}

 \bf  {volume(v_{2})=30ml}

 \bf {v_{2}=\frac{30}{1000}litres}

 \bf {v_{1}=0.03litres}

 \colon \dashrightarrow\bf{Molarity(M_{2})=\frac{n_{2}}{v_{2}}}

 \colon \dashrightarrow\bf{0.2=\frac{n_{2}}{0.03litres}}

 \colon \dashrightarrow\bf{n_{2}=0.2\times0.03litres}

 \implies \bf \green{n_{2}=0.006}

________________________

Solution 3:-

 \dashrightarrow\bf{30\: ml\:of\: 0.3\: M}

 \bf {Molarity (M_{3})=0.3}

 \bf{volume(v_{3})=30ml}

 \bf {v_{3}=\frac{30}{1000}litres}

 \bf {v_{3}=0.03litres}

 \colon \dashrightarrow\bf{Molarity(M_{3})=\frac{n_{3}}{v_{3}}}

 \colon \dashrightarrow\bf{0.3=\frac{n_{3}}{0.03litres}}

 \colon \dashrightarrow\bf{n_{3}=0.3\times0.03litres}

 \implies \bf \green{n_{3}=0.009}

________________________

★Now the total no of moles,

 \dashrightarrow \bf{n_{total}=n_{1}+n_{2}+n_{3}}

 \dashrightarrow\bf {n_{total}=0.002+0.006+0.009}

 \dashrightarrow\bf {n_{total}=0.017}

 \dashrightarrow {Total\: volume\: given:-100ml}

 \bf {v_{total}=\frac{100}{1000}litres}

 \bf {v_{total}=0.1litres}

★The total molarity comes out to be,

 \colon \dashrightarrow\bf{Molarity(M_{total})=\frac{n_{total}}{v_{total}}}

 \colon \dashrightarrow\bf{Molarity(M_{total})=\frac{0.017}{0.1litres}}

 \colon \dashrightarrow\bf{Molarity(M_{total})=\frac{17\times10}{1000}}

 \implies \bf\green  {\fbox{Total\: molarity=0.17M}}

________________________

 \sf \orange{\underline{\underline{Henceforth,}}}

★Option (4)-0.17M is the correct answer

Similar questions