Math, asked by pronavneetsingh, 6 months ago

*20 POINT* please answer fast​

Attachments:

Answers

Answered by Asterinn
6

\implies\displaystyle \int \dfrac{1}{1 -  {x}^{6} }dx

we can also write the above expression as :-

\implies\displaystyle \int \dfrac{1}{1 -  {( {x}^{3}) }^{2} }dx

⟹ (x³)² = x⁶

Now we know that :-

\implies\displaystyle \int \dfrac{1}{ {a}^{2}  -  {y}^{2} }dy =  \frac{1}{2a}   log( \dfrac{a + y}{a - y} )  + c

We will use the above formula :

\implies\displaystyle \int \dfrac{1}{ {1}^{2}  -  {( {x}^{3}) }^{2} }dx

here y = x³ and a = 1

\implies\displaystyle \dfrac{1}{2}  log( \dfrac{1 +  {x}^{3} }{1 -  {x}^{3} } )  + c

Where c = constant

Answer :

\displaystyle \dfrac{1}{2}  log( \dfrac{1 +  {x}^{3} }{1 -  {x}^{3} } )  + c

________________________

Learn more :-

∫ 1 dx = x + C

∫ sin x dx = – cos x + C

∫ cos x dx = sin x + C

∫ sec2 dx = tan x + C

∫ csc2 dx = -cot x + C

∫ sec x (tan x) dx = sec x + C

∫ csc x ( cot x) dx = – csc x + C

∫ (1/x) dx = ln |x| + C

∫ ex dx = ex+ C

∫ ax dx = (ax/ln a) + C

( Also check attachment for more Formulae )

________________________

Attachments:
Answered by Anonymous
3

Given,

The function is

  •  \tt y =  \frac{1}{1 -  {x}^{6} }

Integrating wrt to x , we get

 \tt \implies \int{ \frac{1}{1 -  {x}^{6} } } \: dx

 \tt \implies \int{ \frac{1}{ {(1)}^{2}  -  {( {x}^{3} )}^{2} } } \: dx

  \tt\implies   \frac{1}{2 \times 1}  log( \frac{1 +  {x}^{3} }{1 -  {x}^{3} } )  + c

 \tt \implies  \frac{1}{2 }  log( \frac{1 +  {x}^{3} }{1 -  {x}^{3} } )  + c

Remmember :

 \star  \:  \: \tt \int \frac{dx}{ {x}^{2} -  {a}^{2}  }  =  \frac{1}{2a}  log( \frac{x - a}{x + a} )  + c

 \star  \:  \: \tt  \int \frac{dx}{ {a}^{2} -  {x}^{2}  }  =  \frac{1}{2a}  log( \frac{a +  x}{a -x} )  + c

  \star  \:  \: \tt \int{ \frac{dx}{ \sqrt{ {x}^{2} +  {a}^{2}  } } } =  log(x +  \sqrt{ {x}^{2} +  {a}^{2}  } )  + c

 \star  \:  \: \tt  \int{ \frac{dx}{ \sqrt{ {x}^{2}  -   {a}^{2}  } } } =  log(x +  \sqrt{ {x}^{2}  -   {a}^{2}  } )  + c

 \star  \:  \: \tt  \int{ \frac{dx}{ {x}^{2} +  {a}^{2}  } } =  \frac{1}{a}  {tan}^{ - 1}  \frac{x}{a}  + c

  \star  \:  \: \tt \int{ \frac{dx}{ \sqrt{ {a}^{2} -  {x}^{2}  } } } =  {sin}^{ - 1}  \frac{x}{a}  + c

Similar questions