Math, asked by DIVINEE, 1 year ago

♡ 20 Points ! No SPAM ♡

  \large\boxed{ \bold{ \star \: EVALUATE : }}
\tt{ \sin(60) \cos(30)  +  \cos(60)  \sin(30) }

Answers

Answered by Anonymous
21

SOLUTION

sin60°.cos30° + cos60°.sin30°

 =  >  \frac{ \sqrt{3} }{2}  \times  \frac{ \sqrt{3} }{2}  +  \frac{1}{2}  \times  \frac{1}{2}  \\  \\  =  >  \frac{3}{4}  +  \frac{1}{4}  \\  \\  =  >  \frac{4}{4}  = 1 \\  \\  =  > 1 \:  \:  \:  \: [Answer]

Hope it helps ☺️

Answered by Anonymous
48

\red {\huge {\underline{ \frak{Your \: answEr : }}}}

\boxed{\blacksquare  \: \mathfrak{trigonometric \: values}}

 \scriptsize \tt{ \sin(60) =  \frac{ \sqrt{3} }{2}  }

\scriptsize \tt{ \cos(30) =  \frac{ \sqrt{3} }{2}  }

\scriptsize \tt{ \cos(60)  =  \frac{1}{2} }

\scriptsize \tt{ \sin(30) =  \frac{1}{2}  }

\boxed{\blacksquare  \: \mathfrak{now \: head \: to \: the \: question}}

 \Rightarrow \bold{ \sin(60) \cos(30)   +  \cos(60) \sin(30)  }

Plugging in the Values ;

 \large\Rightarrow \bold{( \frac{ \sqrt{3} }{2}  \times \frac{   \sqrt{3}   }{2} ) + (\frac{1}{2} \times  \frac{1}{2} )  }

 \large\Rightarrow \bold{ \frac{3}{4}  +  \frac{1}{4} }

 \large\Rightarrow \bold{ \frac{4}{4} }

\huge\blue{\boxed{\large\Rightarrow \bold{ 1 }}}

\huge{\red{\ddot{\smile}}}

Similar questions