20.Prove that A-(B-C)=(A-B)uu(A nn C) by using Properties.
Answers
Answered by
2
Proof:
L.H.S. = A - (B - C)
= A - (B ∩ C'), since A - B = A ∩ B'
= A ∩ (B ∩ C')'
= A ∩ {B' U (C')'}, since (A ∩ B)' = A' U B'
= A ∩ (B' U C)
= (A ∩ B') U (A ∩ C)
= (A - B) U (A ∩ C) = R.H.S.
∴ A - (B - C) = (A - B) U (A ∩ C)
This completes the proof.
Some properties of set algebra:
1. A U Φ = A, A ∩ Φ = Φ
2. A U U = U, A ∩ U = A
3. A U A = A, A ∩ A = A
4. A U (B U C) = (A U B) U C
5. A ∩ (B ∩ C) = (A ∩ B) ∩ C
6. A U (B ∩ C) = (A U B) ∩ (A U C)
7. A ∩ (B U C) = (A ∩ B) U (A ∩ C)
8. A U A' = U
9. A ∩ A' = Φ
10. (A U B)' = A' ∩ B'
11. (A ∩ B)' = A' U B'
12. A - B = A ∩ B'
13. A - (B ∩ C) = (A - B) U (A - C)
14. A - (B U C) = (A - B) ∩ (A - C)
15. A Δ B = (A - B) U (B - A)
16. A Δ B = B Δ A
Answered by
2
Step-by-step explanation:
Hope it helps u...bro..
Attachments:
Similar questions