Math, asked by mriganka46, 10 hours ago

20. Randy scored x marks in mathematics. His marks in biology were 3 more than two-thirds of the marks obtained by him in mathematics. The marks scored by Randy in biology were ?

Answers

Answered by HuYaarKoiTo
1

Step-by-step explanation:

The container will be emptied in 63 minutes.

Step-by-step-explanation:

We have given that,

For a conical container filled with petrol,

Radius ( r ) = 10 m

Height ( h ) = 15 m

Rate of releasing petrol = 25 m³/min

We have to find the time required for the container to empty.

We know that,

\displaystyle{\boxed{\pink{\sf\:Volume\:of\:cone\:=\:\dfrac{1}{3}\:\pi\:r^2\:h\:}}}

Volumeofcone=

3

1

πr

2

h

\displaystyle{\implies\sf\:Volume\:of\:container\:=\:\dfrac{1}{\cancel{3}}\:\times\:3.14\:\times\:(\:10\:)^2\:\times\:\cancel{15}}⟹Volumeofcontainer=

3

1

×3.14×(10)

2

×

15

\displaystyle{\implies\sf\:Volume\:of\:container\:=\:3.14\:\times\:100\:\times\:5}⟹Volumeofcontainer=3.14×100×5

\displaystyle{\implies\sf\:Volume\:of\:container\:=\:314\:\times\:5}⟹Volumeofcontainer=314×5

\displaystyle{\implies\:\boxed{\blue{\sf\:Volume\:of\:container\:=\:1570\:m^3\:}}}⟹

Volumeofcontainer=1570m

3

Now,

\displaystyle{\boxed{\green{\sf\:Time\:required\:to\:empty\:container\:=\:\dfrac{Volume\:of\:container}{Rate\:of\:releasing\:petrol}}}}

Timerequiredtoemptycontainer=

Rateofreleasingpetrol

Volumeofcontainer

\displaystyle{\implies\sf\:Time\:required\:to\:empty\:container\:=\:\dfrac{\cancel{1570}\:m^3}{\cancel{25}\:m^3\:/\:min}}⟹Timerequiredtoemptycontainer=

25

m

3

/min

1570

m

3

\displaystyle{\implies\sf\:Time\:required\:to\:empty\:container\:=\:\dfrac{\cancel{314}\:\cancel{m^3}}{\cancel{5}\:\dfrac{\cancel{m^3}}{min}}}⟹Timerequiredtoemptycontainer=

5

min

m

3

314

m

3

\displaystyle{\implies\sf\:Time\:required\:to\:empty\:container\:=\:\dfrac{62.8}{\dfrac{1}{min}}}⟹Timerequiredtoemptycontainer=

min

1

62.8

\displaystyle{\implies\sf\:Time\:required\:to\:empty\:container\:=\:62.8\:min}⟹Timerequiredtoemptycontainer=62.8min

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:Time\:required\:to\:empty\:container\:\approx\:63\:min\:}}}}∴

Timerequiredtoemptycontainer≈63min

∴ The container will be emptied in 63 minutes. pm

Answered by HuYaarKoiTo
0

Step-by-step explanation:

The container will be emptied in 63 minutes.

Step-by-step-explanation:

We have given that,

For a conical container filled with petrol,

Radius ( r ) = 10 m

Height ( h ) = 15 m

Rate of releasing petrol = 25 m³/min

We have to find the time required for the container to empty.

We know that,

\displaystyle{\boxed{\pink{\sf\:Volume\:of\:cone\:=\:\dfrac{1}{3}\:\pi\:r^2\:h\:}}}

Volumeofcone=

3

1

πr

2

h

\displaystyle{\implies\sf\:Volume\:of\:container\:=\:\dfrac{1}{\cancel{3}}\:\times\:3.14\:\times\:(\:10\:)^2\:\times\:\cancel{15}}⟹Volumeofcontainer=

3

1

×3.14×(10)

2

×

15

\displaystyle{\implies\sf\:Volume\:of\:container\:=\:3.14\:\times\:100\:\times\:5}⟹Volumeofcontainer=3.14×100×5

\displaystyle{\implies\sf\:Volume\:of\:container\:=\:314\:\times\:5}⟹Volumeofcontainer=314×5

\displaystyle{\implies\:\boxed{\blue{\sf\:Volume\:of\:container\:=\:1570\:m^3\:}}}⟹

Volumeofcontainer=1570m

3

Now,

\displaystyle{\boxed{\green{\sf\:Time\:required\:to\:empty\:container\:=\:\dfrac{Volume\:of\:container}{Rate\:of\:releasing\:petrol}}}}

Timerequiredtoemptycontainer=

Rateofreleasingpetrol

Volumeofcontainer

\displaystyle{\implies\sf\:Time\:required\:to\:empty\:container\:=\:\dfrac{\cancel{1570}\:m^3}{\cancel{25}\:m^3\:/\:min}}⟹Timerequiredtoemptycontainer=

25

m

3

/min

1570

m

3

\displaystyle{\implies\sf\:Time\:required\:to\:empty\:container\:=\:\dfrac{\cancel{314}\:\cancel{m^3}}{\cancel{5}\:\dfrac{\cancel{m^3}}{min}}}⟹Timerequiredtoemptycontainer=

5

min

m

3

314

m

3

\displaystyle{\implies\sf\:Time\:required\:to\:empty\:container\:=\:\dfrac{62.8}{\dfrac{1}{min}}}⟹Timerequiredtoemptycontainer=

min

1

62.8

\displaystyle{\implies\sf\:Time\:required\:to\:empty\:container\:=\:62.8\:min}⟹Timerequiredtoemptycontainer=62.8min

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:Time\:required\:to\:empty\:container\:\approx\:63\:min\:}}}}∴

Timerequiredtoemptycontainer≈63min

∴ The container will be emptied in 63 minutes. pm

Answered by HuYaarKoiTo
1

Step-by-step explanation:

The container will be emptied in 63 minutes.

Step-by-step-explanation:

We have given that,

For a conical container filled with petrol,

Radius ( r ) = 10 m

Height ( h ) = 15 m

Rate of releasing petrol = 25 m³/min

We have to find the time required for the container to empty.

We know that,

\displaystyle{\boxed{\pink{\sf\:Volume\:of\:cone\:=\:\dfrac{1}{3}\:\pi\:r^2\:h\:}}}

Volumeofcone=

3

1

πr

2

h

\displaystyle{\implies\sf\:Volume\:of\:container\:=\:\dfrac{1}{\cancel{3}}\:\times\:3.14\:\times\:(\:10\:)^2\:\times\:\cancel{15}}⟹Volumeofcontainer=

3

1

×3.14×(10)

2

×

15

\displaystyle{\implies\sf\:Volume\:of\:container\:=\:3.14\:\times\:100\:\times\:5}⟹Volumeofcontainer=3.14×100×5

\displaystyle{\implies\sf\:Volume\:of\:container\:=\:314\:\times\:5}⟹Volumeofcontainer=314×5

\displaystyle{\implies\:\boxed{\blue{\sf\:Volume\:of\:container\:=\:1570\:m^3\:}}}⟹

Volumeofcontainer=1570m

3

Now,

\displaystyle{\boxed{\green{\sf\:Time\:required\:to\:empty\:container\:=\:\dfrac{Volume\:of\:container}{Rate\:of\:releasing\:petrol}}}}

Timerequiredtoemptycontainer=

Rateofreleasingpetrol

Volumeofcontainer

\displaystyle{\implies\sf\:Time\:required\:to\:empty\:container\:=\:\dfrac{\cancel{1570}\:m^3}{\cancel{25}\:m^3\:/\:min}}⟹Timerequiredtoemptycontainer=

25

m

3

/min

1570

m

3

\displaystyle{\implies\sf\:Time\:required\:to\:empty\:container\:=\:\dfrac{\cancel{314}\:\cancel{m^3}}{\cancel{5}\:\dfrac{\cancel{m^3}}{min}}}⟹Timerequiredtoemptycontainer=

5

min

m

3

314

m

3

\displaystyle{\implies\sf\:Time\:required\:to\:empty\:container\:=\:\dfrac{62.8}{\dfrac{1}{min}}}⟹Timerequiredtoemptycontainer=

min

1

62.8

\displaystyle{\implies\sf\:Time\:required\:to\:empty\:container\:=\:62.8\:min}⟹Timerequiredtoemptycontainer=62.8min

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:Time\:required\:to\:empty\:container\:\approx\:63\:min\:}}}}∴

Timerequiredtoemptycontainer≈63min

∴ The container will be emptied in 63 minutes. pm

Similar questions