20. The angle between two altitudes of a parallelogram through the vertex
of an obtuse angle of the parallelogram is 60°. Find the angles of the
parallelogram.
Answers
Answered by
1
Step-by-step explanation:
Given-
□ABCD is a parallelogram.
∠B & ∠D are obtuse.
BM & DN are altitudes from B & D on AD & AB, respectively, intersecting at O.
∠DOM=BON ...(vertically opposite angles=60o)
To find out-
The angles of the parallelogram ABCD.
Solution-
∠DOM+∠NOM=180o ...(linear pair)
⟹60o+∠NOM=180o
⟹∠NOM=120o .........(i)
Now, ∠AMO=∠DNO=90O ...(both are perpendiculares on AD & AB, respectively.)$$
∴ In the quadrilateral AMON,
∠AMO+∠DNO=180O
∴∠NOM+∠MAN=360o−180O=180o
(sum of the angles of a quadrilateral =360o)
⟹∠MAN=180O−120o ...(from i )
i.e ∠A=60o
∴∠A=∠C=60o ....(opposite angles of a paralleogram)
∴∠D+∠B=360o−120o=240o
∴∠D=∠B=2
Similar questions