Math, asked by gobarbuddhi, 23 hours ago

20. The value of x in the set {2, 3, 4, 5, 6) satisfying 92 = - 3(mod m )​

Answers

Answered by sangampatle678
1

Answer:

Step-by-step explanation:

Given : Expression (\frac{3}{4})^6\times (\frac{16}{9})^5=(\frac{4}{3})^{x+2}(

4

3

)

6

×(

9

16

)

5

=(

3

4

)

x+2

To find : The value of x ?

Solution :

Re-write the expression as,

(\frac{4}{3})^{-6}\times (\frac{4^2}{3^2})^5=(\frac{4}{3})^{x+2}(

3

4

)

−6

×(

3

2

4

2

)

5

=(

3

4

)

x+2

(\frac{4}{3})^{-6}\times (\frac{4}{3})^{10}=(\frac{4}{3})^{x+2}(

3

4

)

−6

×(

3

4

)

10

=(

3

4

)

x+2

Using exponential property, a^b\times a^c=a^{b+c}a

b

×a

c

=a

b+c

(\frac{4}{3})^{-6+10}=(\frac{4}{3})^{x+2}(

3

4

)

−6+10

=(

3

4

)

x+2

(\frac{4}{3})^{4}=(\frac{4}{3})^{x+2}(

3

4

)

4

=(

3

4

)

x+2

Comparing the base,

4=x+24=x+2

x=2x=2

Therefore, the value of x is 2. thanks

Answered by kavitahari04
0

Answer:

4 3 6 2 x+2 is correct answer okay

Similar questions