Math, asked by ushukla7912, 10 months ago

(20) Two numbers are in the ratio of 1:3. If 5 is added to both the numbers, the ratio becomes 1:2. Find the numbers.

Answers

Answered by Vamprixussa
8

Let the numbers be x and y.

Given

Two numbers are in the ratio of 1:3

\implies \dfrac{x}{y} = \dfrac{1}{3}

\implies 3x=y

\implies 3x-y=0--(1)

If 5 is added to both the numbers, the ratio becomes 1:2

\implies \dfrac{x+5}{y+5} = \dfrac{1}{2}

\implies 2x+10=y+5

\implies 2x-y=5-10

\implies 2x-y=-5--(2)

Solving (1) and (2), we get,

3x-y=0\\\underline{2x-y=-5}\\\underline{\underline{x=5}}

Substituting x = 5 in the second equation, we get

\implies 2(5) - y = -5\\\implies 10-y=-5\\\implies -y=-5-10\\\implies -y=-15\\\implies y = 15

\boxed{\boxed{\bold{Therefore, \ the \ numbers \ are \ 5 \ and \ 15}}}}}}}}}}

                                                       

Answered by Anonymous
6

\sf\red{\underline{\underline{Answer:}}}

\sf{The \ numbers \ are \ 5 \ and \ 15 \ respectively.}

\sf\orange{Given:}

\sf{\implies{Two \ numbers \ are \ in \ the \ ratio }}

\sf{of \ 3:5}

\sf{\implies{If \ 5 \ is \ added \ to \ both \ the \ numbers,}}

\sf{the \ ratio \ becomes \ 1:2.}

\sf\pink{To \ find;}

\sf{The \ numbers.}

\sf\green{\underline{\underline{Solution:}}}

\sf{Let \ the \ numbers \ be \ x \ and \ y.}

\sf{According \ to \ the \ first \ condition.}

\sf{\frac{x}{y}=\frac{1}{3}}

\sf{\therefore{3x=y}}

\sf{\therefore{3x-y=0...(1)}}

\sf{According \ to \ the \ second \ condition.}

\sf{\frac{x+5}{y+5}=\frac{1}{2}}

\sf{\therefore{2(x+5)=y+5}}

\sf{\therefore{2x+10=y+5}}

\sf{\therefore{2x-y=-5...(2)}}

\sf{Subtract \ equation \ (2) \ from \ equation (1)}

\sf{3x-y=0}

\sf{-}

\sf{2x-y=-5}

____________________

\boxed{\sf{\therefore{x=5}}}

\sf{Substitute \ x=5 \ in \ equation \ (1)}

\sf{3(5)-y=0}

\sf{\therefore{15-y=0}}

\boxed{\sf{\therefore{y=15}}}

\sf\purple{\tt{\therefore{The \ numbers \ are \ 5 \ and \ 15 \ respectively.}}}

Similar questions