Math, asked by patilpratmesh1, 2 months ago

2002
2001
solve: x
+ 10%
200
102
952​

Answers

Answered by amit1402000
0

Step-by-step explanation:

We have,

\dfrac{x^{2002}+10x^{2001}}{10x^{2000}} =957.9

10x

2000

x

2002

+10x

2001

=957.9

To find, the value of x = ?

∴ \dfrac{x^{2002}+10x^{2001}}{10x^{2000}} =957.9

10x

2000

x

2002

+10x

2001

=957.9

⇒ \dfrac{x^{2002}}{10x^{2000}}+\dfrac{10x^{2001}}{10x^{2000}} =957.9

10x

2000

x

2002

+

10x

2000

10x

2001

=957.9

⇒ \dfrac{x^{2002-2000}}{10}+x^{2001-2000}=957.9

10

x

2002−2000

+x

2001−2000

=957.9

⇒ \dfrac{x^{2}}{10}+x=957.9

10

x

2

+x=957.9

⇒ \dfrac{x^{2}+10x}{10}=957.9

10

x

2

+10x

=957.9

By crossmultiplication, we get

⇒ x^{2}+10x=957.9\times 10=9579x

2

+10x=957.9×10=9579

⇒ x^{2}x

2

+ 10x - 9579 = 0

⇒ x^{2}x

2

+ 103x - 93x - 9579 = 0

⇒ x(x + 103) - 93(x + 103) = 0

⇒ (x - 93)(x + 103) = 0

⇒ x - 93 = 0 or, x + 103 = 0

⇒ x = 93 or, x = - 103

∴ x = 93 or, x = - 103

Similar questions