Math, asked by joshimanoj578, 1 year ago

2010th root of (2√7-3√3) * 4020th root of (55+12√21)=?

Answers

Answered by IamIronMan0
57

Answer:

1

Step-by-step explanation:

  \sqrt[2010]{(2 \sqrt{7}  - 3 \sqrt{3} )} \times  \sqrt[4020]{55 + 12 \sqrt{21} }  \\  \\  = \sqrt[2010]{(2 \sqrt{7}  - 3 \sqrt{3} )} \times  \sqrt[4020]{ 27 + 28+2 \times  2 \sqrt{3}  \times 3 \sqrt{3}  }   \\  \\  = \sqrt[2010]{(2 \sqrt{7}  - 3 \sqrt{3} )} \times  \sqrt[4020]{(3 \sqrt{3}) {}^{2}   + (2 \sqrt{7}) {}^{2}    +  2\times 3 \sqrt{3}  \times 2 \sqrt{3} } \\  \\  = \sqrt[2010]{(2 \sqrt{7}  - 3 \sqrt{3} )} \times  \sqrt[4020]{ (2\sqrt{7}    + 3 \sqrt{3}  ) {}^{2}  }   \\  \\  = \sqrt[2010]{(2 \sqrt{7}   -  3 \sqrt{3} )} \times  \sqrt[2010]{2 \sqrt{7}  + 3 \sqrt{3}  }   \\  \\  = \sqrt[2010]{(2 \sqrt{7}  - 3 \sqrt{3} )(2 \sqrt{ 7}   + 3 \sqrt{3}) }  \\  \\   \sqrt[2010]{( {2 \sqrt{7} )}^{2}  - (3 \sqrt{3)} {}^{2}  }  \\  \\  =  \sqrt[2010]{28 - 27}  \\  \\  =  \sqrt[2010]{1}  \\  \\  = 1

Answered by santy2
7

Answer:

1

Step-by-step explanation:

We can rewrite the equation as;

(\sqrt[2010]{(2\sqrt{7}-3\sqrt{3}  })*(\sqrt[4020]{(55+12\sqrt{21} }))

we apply BODMAS

and begin with operations within the brackets

The first bracket can be solved as;

2\sqrt{7}-3\sqrt{3}=2(2.645751311)-3(1.732050808)\\  =0.095350199

The first bracket can be solved as;

55+12\sqrt{21}=55+12(4.582575695)\\ =109.9909083

Now, the whole equation can be rewritten as;

\sqrt[2010]{0.095350199} *\sqrt[4020]{109.9909083} \\=0.095350199^{\frac{1}{2010}}* 109.9909083^{\frac{1}{4020}\\ =0.99883143*1.001169937\\=1

Similar questions