Math, asked by praveen1638, 8 months ago

2020^2-2019^2+2018^2-2017^2+.....+4^2-3^2+2^2-1^2 =x then find x​

Answers

Answered by tennetiraj86
3

Answer:

tried for that answer for the given problem is given

Attachments:
Answered by pulakmath007
0

SOLUTION

GIVEN

 \sf  {2020}^{2}  -  {2019}^{2}  +  {2018}^{2}  -  {2017}^{2}  + ... +  {4}^{2}  -  {3}^{2}  +  {2}^{2}  -  {1}^{2}  = x

TO DETERMINE

The value of x

EVALUATION

 \sf  {2020}^{2}  -  {2019}^{2}  +  {2018}^{2}  -  {2017}^{2}  + ... +  {4}^{2}  -  {3}^{2}  +  {2}^{2}  -  {1}^{2}  = x

 \sf  \implies x =  {2020}^{2}  -  {2019}^{2}  +  {2018}^{2}  -  {2017}^{2}  + ... +  {4}^{2}  -  {3}^{2}  +  {2}^{2}  -  {1}^{2}

Number of terms = 2020

We group them taking 2 terms in one bracket

 \sf  \implies x =(  {2020}^{2}  -  {2019}^{2})  + ( {2018}^{2}  -  {2017}^{2} ) + ... +  ({4}^{2}  -  {3}^{2})  +(  {2}^{2}  -  {1}^{2}  )

Number of brackets = 1010

 \sf  \implies x =(  2020 + 2019)(  2020  -  2019)  + (2018  +  2017)(2018 - 2017) + ... +  (4 + 3)(4 - 3)  +(2 + 1)(2 - 1)

Now simplify the above

 \sf  \implies x =4039  + 4035 + ... +  7  +3

This is an arithmetic progression

First term = a = 4039

Common Difference = d = - 4

Number of terms = 1010

  \displaystyle \sf{ x=   \frac{n}{2}   \bigg[ 2a + (n - 1)d\bigg] }

  \displaystyle \sf{ \implies x=   \frac{1010}{2}   \bigg[ (2 \times 4039)  - 4 (1010 - 1)\bigg] }

  \displaystyle \sf{ \implies x=   505  \bigg[8078  - 4  \times 1009\bigg] }

  \displaystyle \sf{ \implies x=   505  \bigg[8078  - 4036\bigg] }

  \displaystyle \sf{ \implies x=   505   \times 4042 }

  \displaystyle \sf{ \implies x=  2041210 }

FINAL ANSWER

Hence the required value of x = 2041210

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. if (x)=3x+10 g(x)=x-2 find f(g(5) is?

https://brainly.in/question/24298304

2. Given f(x) = 2x²- 5x-12 and g(x)= 2x +3

Find (f + g ) (-2)

https://brainly.in/question/23014958

Similar questions