Math, asked by mamtabgs395, 6 months ago

21. (a) If f(x) = 24x+px? -5x +q has two factors 2x +1 and 3x -1 then find p and q. Also, factorize
f(x) completely.

PLEASE SOLVE IT VER FAST

BECAUSE

IT'S SO URGENT.​

Attachments:

Answers

Answered by Anonymous
70

Given:-

  • f(x) = 24x³ + px² - 5x + q

  • g(x) = 2x + 1

  • g(x) = 3x - 1

To Find :-

  • The Value of P and Q

Now,

→ g(x) = 2x + 1 = 0

→ 2x = - 1

→ x = -1/2

Putting the value of "x" in f(x).

→ f (x) = 24x³ + px² - 5x + q

→ 24 ( -1/2)³ + p ( -1/2)² - 5 ( -1/2) + q = 0

\sf{24 * \dfrac{ -1}{8} + p * \dfrac{1}{4} + 5 * \dfrac{1}{2} + q = 0}

\sf{ -3 + \dfrac{P}{4} + \dfrac{5}{2} + q = 0}

\sf{\dfrac{ -12 + P + 10 + 4q}{ 4 } = 0}

\sf{ -12 + P + 10 + 4q = 0}

\sf{ -2 + P + 4q = 0}

\sf{ P + 4q = 2 }..........1

Again,

→ g ( x ) = 3x - 1 = 0

→ 3x = 1

→ x = 1/3

Putting the Value of "x" in f(x)

→ f (x) = 24x³ + px² - 5x + q

→ 24 ( 1/3)³ + p ( 1/3)² - 5 ( 1/3) + q

\sf{24 * \dfrac{ 1}{27} + p * \dfrac{1}{9} + 5 * \dfrac{1}{3} + q }

\sf{ \dfrac{24}{27} + \dfrac{P}{9} + \dfrac{ 5}{3} + q = 0 }

\sf{ \dfrac{ 24 + 3P + 45 + 27q}{27}= 0}

\sf{ 3 ( 8 + P + 15 + 9q ) = 0/3}

\sf{ 8 + P + 15 + 9q = 0}

\sf { 23 + P + 9q = 0}

\sf { p + 9q = -23 }.......2

Subtracting eq. 1 and eq. 2

→ P + 9q - ( P + 4q ) = -23 - 2

→ P + 9q - P - 4q = -25

→ 5q = -25

→ q = -25/5.

→ q = -5

Now, Putting the value of q in eq. 1

→ P + 4q = 2

→ P + 4 × -5 = 2

→ P- 20 = 2

→ P = 2 + 20

→ P = 22

Hence, The Value of P and Q is 22 and -5

Answered by Anonymous
102

 \huge \bf \star  \{  \pink q \blue u \red e \purple s \green t \pink i \blue o \red n \}

(a) If f(x) = 24x+px? -5x +q has two factors 2x +1 and 3x -1 then find p and q. Also, factorize

f(x) completely.

 \large \bf given

f(x) = 24x³ + px² - 5x + q \\ </p><p>g(x) = 2x + 1 \\ </p><p>g(x) = 3x

 \large \bf \: to \: find

The  \: Value  \: of \:  P \:  and \:  Q.

 \large \ \bf \: solution

 g(x) = 2x + 1 = 0 \\ </p><p></p><p>2x = - 1 \\ </p><p></p><p> x = -1/2 \\ </p><p>

put the value of x in f(x)

f (x) = 24x³ + px² - 5x + q \\ </p><p></p><p> 24 ( -1/2)³ + p ( -1/2)² - 5 ( -1/2) + q = 0</p><p>

→ \sf{24  \times  \dfrac{ -1}{8} + p  \times  \dfrac{1}{4} + 5  \times  \dfrac{1}{2} + q = 0}

\sf{ -3 + \dfrac{P}{4} + \dfrac{5}{2} + q = 0} \\ </p><p></p><p></p><p> \sf{\dfrac{ -12 + P + 10 + 4q}{ 4 } = 0}  \\ </p><p></p><p></p><p> \sf{ -12 + P + 10 + 4q = 0} \\ </p><p></p><p> \sf{ -2 + P + 4q = 0} \\ </p><p></p><p> \sf{ P + 4q = 2 }..........(1)equation</p><p>

similarly

g ( x ) = 3x - 1 = 0 \\ </p><p></p><p>3x = 1 \\ </p><p></p><p> x = 1/3</p><p>

 \sf  \star \pink Putting \:  the  \: Value \:  of \:  "x"  \: in  \: f(x)

  f (x) = 24x³ + px² - 5x + q</p><p>

24 ( 1/3)³ + p ( 1/3)² - 5 ( 1/3) + q

 \sf{24  \times  \dfrac{ 1}{27} + p  \times  \dfrac{1}{9} + 5  \times  \dfrac{1}{3} + q } \\ </p><p></p><p>\sf{ \dfrac{24}{27} + \dfrac{P}{9} + \dfrac{ 5}{3} + q = 0 } </p><p></p><p>

→\sf{ \dfrac{ 24 + 3P + 45 + 27q}{27}= 0}

 \sf{ 3 ( 8 + P + 15 + 9q ) = 0} \\ </p><p></p><p> \sf{ 8 + P + 15 + 9q = 0} \\ </p><p></p><p>\sf { 23 + P + 9q = 0} \\ </p><p></p><p> \sf { p + 9q = -23 } ......(.2)equation</p><p>

 \sf \pink\bf \: Subtracting \:  eq. 1 \:  from \:  eq. 2

 P + 9q - ( P + 4q ) = -23 - 2 \\ </p><p></p><p> P + 9q - P - 4q = -25 \\ </p><p></p><p> 5q = -25 \\ </p><p></p><p>q = -25/5. \\ </p><p></p><p>q = -5</p><p>

Now, Putting the value of q in eq. 1

 P + 4q = 2 \\ </p><p></p><p>P + 4 × -5 = 2 \\ </p><p></p><p> P- 20 = 2 \\ </p><p></p><p> P = 2 + 20 \\ </p><p></p><p>P = 22 \\ </p><p>

 \bf \small \blue \star \: Hence,  \: The \:  Value  \: of \:  P \ \:  Q  \: is \:  22 \ and \:  -5

Similar questions