Math, asked by premasahoo2222, 6 months ago

21. (b+c-a) (cor
+ cot) = 2a cot A
A
2.​

Answers

Answered by Anonymous
1

Answer:

a=k sin A

b=k sin B

c=k sin C

(b+c-a)(cot B/2+cot C/2)=2 a cot A/2

(b+c-a)/a=(k sin B+k sin C-k sin A)/k sin A

=k(sin B+sin C-sin A)/k sin A

=(sin B+sin C-sin A)/sin A

sin C+sin D=2 sin (C+D)/2.cos(C-D)/2 AND sin 2 A=2 sin A . cos A

A+B+C=180;

Is (b+c-a) (cot B/2+cot C/2) =2a cot A/2?

Answer

2

Follow

Request

More

Ad by Dell

Season to start anew.

Celebrate festivities with Dell PCs.

Shop Now

2 Answers

Subandi Jayaweera, studied at Dharmasoka College

Updated July 17

a/Sin A=b/Sin B=c/Sin C=k ( SIN THEOREM)

so, a=k sin A

b=k sin B

c=k sin C

(b+c-a)(cot B/2+cot C/2)=2 a cot A/2

(b+c-a)/a=(k sin B+k sin C-k sin A)/k sin A

=k(sin B+sin C-sin A)/k sin A

=(sin B+sin C-sin A)/sin A

sin C+sin D=2 sin (C+D)/2.cos(C-D)/2 AND sin 2 A=2 sin A . cos A

A+B+C=180;

so,

(sin B+sin C-sin A)/sin A=[2sin (B+C)/2.cos (B-C)/2– 2sin A/2.cosA/2]/2sin A/2.cosA/2

(B+C)/2=(180-A)/2;

=[sin(90-A/2).cos(B-C)/2-sin A/2.cos A/2]/sin A/2.cos A/2

sin (90-A)=cos A;

=[cos A/2.cos(B-C)/2-sin A/2.cos A/2]/sin A/2.cos A/2

=cos A/2[cos(B-C)/2-sin A/2]/sin A/2.cos A/2

(cos A)/(sin A)=cot A;

={cot A/2[cos(B-C)/2-sin A/2]}/cos A/2

A/2=[180-(B+C)]/2;

=cot A/2 [cos (B-C)/2-sin 90–(B+C)/2]/cos A/2

Similar questions