Math, asked by Anonymous, 7 months ago

21. If a4 +1/a4= 322, find the value of a3-1/a3 please reply me with my answer​

Answers

Answered by King412
57

\huge\bold\star\mathrm\red{Question:-}

\mathrm{If\: a^{4} \:+1/a^{4}= 322, \:find\: the \:value \:of}

\mathrm{a^{3}-1/a^{3}},

\huge\bold\star\mathrm\red{Given:-}

 \implies \:  {a}^{4}  +  \frac{1}{ {a}^{4} }  = 322 \\

\huge\bold\star\mathrm\red{Solution:-}

\mathrm{Adding\:2\:on\:both\:side},

 \longrightarrow \:  {a}^{4}  +  \frac{1}{ {a}^{4} }  + 2 = 322 + 2 \\

 \longrightarrow \:( {a}^{2}  +  \frac{1}{ {a}^{2} } )^{2}  = 324 \\

 \longrightarrow \: \: ( {a}^{2}  +  \frac{1}{ {a}^{2} } ) =  \sqrt{324}  \\

 \longrightarrow \: \: ( {a}^{2}  +  \frac{1}{ {a}^{2} } ) =  18  \\

\mathrm{Subtracting\:2\:from\:both\:side}

 \red \implies \:  {a}^{2}  +  \frac{1}{ {a}^{2}}  - 2 = 18 - 2 \\

  \red\implies \:  {( {a} +  \frac{1}{ {a} }  })^{2}  = 16 \\

 \red \implies \: a -  \frac{1}{a}  = 4 \\

\mathrm{Now},

 \therefore \: ( {a}^{}  -  \frac{1}{a} )^{3}  \\

 \green\longrightarrow \:  {a}^{3}  -  \frac{1}{ {a}^{3} }  - 3 \times a \times  \frac{1}{a} (a -  \frac{1}{a} ) \\

 \green \longrightarrow \:  {4}^{3}  =  {a}^{3}  -  \frac{1}{ {a}^{3} }  - 3 \times 4 \\

 \green \longrightarrow \:  {a}^{3}  -  \frac{1}{ {a}^{3} }  = 64 + 72

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:     = 76

Hope it's helpful

Answered by Anonymous
0

Answer:

The above answer is correct dear................

Similar questions