Math, asked by pasupathiragavan2004, 3 months ago

21
If B is a symmetric matrix, check whether the matrix ABA^Tis symmetric
or skew symmetric.

Answers

Answered by mathdude500
2

Basic Definition :-

Symmetric Matrix :-

A square matrix A is said to be symmetric iff

\boxed{ \red{ \bf \: {A}^{T} = A}}

Skew - Symmetric Matrix :-

A square matrix A is said to be skew - symmetric iff

\boxed{ \red{ \bf \: {A}^{T} =  - A}}

Solution :-

Given that,

\rm :\longmapsto\:B \: is \: symmetric \: matrix

\bf\implies \: {B}^{T} = B -  -  - (1)

Now,

We have to check that,

\rm :\longmapsto\:AB {A}^{T}\: is \: symmetric \: or \: skew - symmetric.

So,

Consider,

\rm :\longmapsto\: {( AB{A}^{T}) }^{T}

 \sf \:  =  \:  \: {( {A}^{T})}^{T} {B}^{T} {A}^{T}

 \sf \:  =  \:  \:  AB{A}^{T}

\bf\implies \:\: {(AB {A}^{T}) }^{T} =  AB{A}^{T}

\bf\implies \:\: AB{A}^{T} \: is \: symmetric.

Additional Information :-

\boxed{ \red{ \bf \: {(A + B)}^{T} =  {A}^{T} +  {B}^{T}}}

\boxed{ \red{ \bf \: {(A  -  B)}^{T} =  {A}^{T}  -   {B}^{T}}}

\boxed{ \red{ \bf \: {(AB)}^{T} =  {B}^{T}  {A}^{T}}}

\boxed{ \red{ \bf \: {( {A}^{T})}^{T} = A}}

\boxed{ \red{ \bf \: {(kA)}^{T} = k \:  {A}^{T}}}

Similar questions